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Basilar-membrane and auditory-nerve responses to impulsive acoustic stimuli, whether measured
directly in response to clicks or obtained indirectly using cross- or reverse-correlation and/or Fourier
analysis, manifest a striking symmetry: near-invariance with stimulus intensity of the fine time
structure of the response over almost the entire dynamic range of hearing. This paper explores the
origin and implications of this symmetry for cochlear mechanics. Intensity-invariance is
investigated by applying the EQ-NL theoréde Boer, Aud. Neurosc8, 377—3881997] to define

a family of linear cochlear models in which the strength of the active force generators is controlled
by a real-valued, intensity-dependent parametefwith 0<+y<1). The invariance of fine time
structure is conjectured to imply that asis varied the poles of the admittance of the cochlear
partition remain within relatively narrow bands of the complex plane oriented perpendicular to the
real frequency axis. Physically, the conjecture implies that the local resonant frequencies of the
cochlear partition are nearly independent of intensity. Cochlear-model responses, computed by
extending the model obtained by solution of the inverse problem in squirrel monkey at low sound
levels [Zweig, J. Acoust. Soc. Am89, 1229-1254(1991)] with three different forms of the
intensity dependence of the partition admittance, support the conjecture. Intensity-invariance of
cochlear resonant frequencies is shown to be consistent with the well-known “half-octave shift,”
describing the shift with intensity in the peédr besj frequency of the basilar-membrane frequency
response. Shifts in best frequency do not arise locally, via changes in the underlying resonant
frequencies of the partition, but globally through the intensity dependence of the driving pressure.
Near-invariance of fine time structure places strong constraints on the mechanical effects of force
generation by outer hair cells. In particular, the symmetry requires that the feedback forces
generated by outer hair cell®HCS not significantly affect the natural resonant frequencies of the
cochlear partition. These results contradict many, if not most, cochlear models, in which OHC
forces produce significant changes in the reactance and resonant frequencies of the partition.
© 2001 Acoustical Society of AmericaDOI: 10.1121/1.1378349
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I. INTRODUCTION sponses” obtained using acoustic click®) indirect esti-
mates obtained by cross- or reverse-correlation using wide-
Responses of the basilar membrane and auditory nerygand noise stimuli(e.g., Carney and Yin, 1988; Carney
to acoustic clicks reveal a striking symmetry: near-invariancest al, 1999; de Boer and Nuttall, 1997, 200@nd(3) “syn-
with stimulus intensity of the fine time structure of the re- thetic” time-domain waveforms obtained by applying in-
sponse over almost the entire dynamic range of hearing. Igerse Fourier analysis to frequency-domain transfer func-
measurements of basilar-membrane motion the symmetijons measured with pure tonds.g., Recio and Rhode,
appears as a near-invariance of the zero crossings of the mggog.
chanical wavefornie.g., Roblest al, 1976; Ruggeret al, Figure 1 illustrates the near intensity-invariance of fine
1992; de Boer and Nuttall, 1997; Reo#b al, 1998; Recio  time structure using recent measurements of basilar-
and Rhode, 2000 In the auditOI’y nerve, the invariance is membrane(BM) click responses in Chinchi”&Recio and
manifest at low and moderate sound levels in the approxirnode, 200D Although the envelopes of the response wave-
mate level independence of the latency to the peaks of botfyyms shift systematically with stimulus intensity over the 70
standard poststimulus-tim@ST) and recovered-probability §g range represented in the figure, the timings of the peaks,
compound PST histogrants.g., Kianget al, 1965; Goblick  yajieys, and zero crossings remain almost unchanged. The
and Pfeiffer, 1969; Lin and Guinan, 2000 Intensity-  probiem of understanding the origin of this symmetry has
invariance of fine temporal detail is remarkably robust to theygen nicely highlighted by de Boer and Nutt@D00. Seek-
method of measurement: The symmetry appeatd)idirect g (o identify necessary and sufficient conditions for obtain-
measurements of mechanical and neural “impulse reing the symmetry, they applied the “EQ-NL theorenttle
Boer, 1997 to study the intensity dependence of basilar-
dElectronic mail: shera@epl.meei.harvard.edu membrane motion in the guinea pig. Although they derived a
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frequency-domain transfer function. Here, we examine the
implications for cochlear mechanics—and, in particular, for

the mechanisms underlying cochlear amplification and

dynamic-range compression—of the near intensity-

invariance of the timing of the oscillations of mechanical and

neural impulse responses. It might seem unlikely that one
can learn much about the mechanisms of cochlear amplifica-
tion from a phenomenon that appears to be largely indepen-
dent of that amplification. That independence, however, is
the key property: Whatever the outer hair cells are doing,

they are doing it in a way that leaves the fine time structure
of the impulse response invariant. Requiring this invariance
turns out to place strong constraints on the mechanical ef-
fects of force generation by outer hair cells.

II. INVARIANCE OF BM RESONANT FREQUENCIES

A. Modeling framework

Normalized BM Displacement

We adopt a simple modeling framework based on the
classical point-impedance model of the cochlea. We assume
that at sound intensities in the low-level linear regime near
threshold, the velocit¥/gy(x,f) of the basilar membrane at
A ; positionx due to sinusoidal stimulation at frequerfcgan be
0 5 10 15 20 written as the product of two factors:

T =Time XCF Veu(X, F)=Ygu(X,f)P(x,f). (D)

FIG. 1. Near-invariance of fine time structure in basilar-membrane click The first term,Ygy(X,f), represents the admittance of the
responses. The figure shows normalized BM responses to clicks from Recigochlear partition, and the second terﬁtx,f), represents

and Rhode(2000, Fig. 2, chinchilla CB21 The horizontal axis measures the driving pressure difference across it. In the time domain
time after the onset of umbo vibration in periods of the (1B.5 kH2. . ’
Eq. (1) becomes a convolution:

Displacement waveforms are normalized to unit amplitude with peak click
Ciaa ke e reponae ook 7o P s oo+ V(G =You (X POK), @
the waveform_envelopes vary systematically yvith cligk intengityy., the where lower- and upper-case quantit(esg.,vBM andVBM)
envelope maximum shifts in time from about eight periods after the onset of . . . .
middle-ear vibration at 44 dB pSPL to about two periods at 114 ti: '€ related py Fourier transformatlon.. As noted in an earlier
underlying fine time structure remains nearly invariéeg., the times of ~ Paper on glidegShera, 200}, the admittance/gy(x,t) and
occurrence of the waveform peaks, valleys, and zero crossings generaliriving pressurep(x,t) differ profoundly in character. The
‘r’:r% e%j;gtségr}tr's:qy Rleesc?otgig shg‘égggglpe”"d over the same '”tens'tédmittance termygu(x,t) characterizes the response of an
isolated section of the cochlear partition to an impulsive
force and depends only on thecal properties of the parti-
cochlear model—based on basilar-membrane impedand®n at positionx. The pressure ternp(x,t), by contrast,
functions obtained from inverse analysis of measured crossepresents the driving force appliéd situ and is therefore
correlation functions—that exhibits the near-invariance ofglobal, since stimuli are usually applied in the ear cafual
the timing of the mechanical impulse response, the origireffectively, at the stapes when responses are normalized by
and implications of the symmetry for cochlear mechanicsstapes motionand must propagate to the measurement loca-
have remained elusive. tion, p(x,t) depends not only on the form of the stimulus,
This paper takes up the problem, adopting the modelindput also on the mechanics of the entire cochlea, including
framework introduced in an earlier study of the frequencyboundary conditions at the stapes and helicotrema.
modulations(or “glides”) evident in impulse responses of We simplify the discussion by assuming the approxi-
the basilar membrane and auditory neri@hera, 200l  mate local scaling symmetriZweig, 1976; Siebert, 1968;
Glides, which represent a change over time in the instantaSondhi, 1978 manifest by basilar-membrane transfer func-
neous frequency of oscillation of the response waveform, aréons (Rhode, 1971; Gummeat al,, 1987 and neural tuning
nearly independent of stimulus intensitg.g., de Boer and curves(e.g., Kiang and Moxon, 1974; Liberman, 197Bo-
Nuttall, 1997; Recicet al,, 1998; Carneet al, 1999; Recio cal scaling symmetry implies that rather than depending on
and Rhode, 2000and even maintain their general form post position and frequency independently, mechanical transfer
mortem(e.g., Recicet al,, 1998. The intensity-invariance of functions and tuning curves in fact depend on the two vari-
glides follows from the invariance of fine time structure we ablesf and x primarily in the dimensionless combination
explore here. In an earlier pap&hera, 200, we demon-  B(x,f)=f/fc(x), wheref(x) is the CF at locatiox (i.e.,
strated basic properties of glides, emphasizing their scalinthe cochlear position-frequency mapin the time domain,
behavior and their relation to the group delay of thescaling implies that corresponding basilar-membrane and
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neural impulse responses dependt@ndx through the di-  effective strength by the factoy. The model M(0) thus
mensionless combination(x,t)=tfcx(x) representing time describes the high-level linear limipr postmortem condi-
measured in periods of the characteristic frequency. Datgéion) in which the active force generators have been entirely
supporting this time-domain manifestation of scaling weredisabled. Application of the EQ-NL theorem to cochlear re-
presented in the earlier paper on glid&hera, 200L When  sponses requires that the input—output cross-correlation
rewritten in terms of the scaling variablgsand 7, Eqs.(1)  functions be measured with flat-spectrum wideband n@ise

and(2) become that the same value ofy characterizes OHC saturation
_ throughout the cochlgaand subsequently normalized by
Vaml(B)=Yeu(AIP(B) stapes velocity. The OHC transduction nonlinearity is as-
and 3 sumed to be memoryless and instantaneous. For a full dis-
cussion, see de Bo€t997.
vam(7)=Yem(7)*p(7). By applying the EQ-NL theorem, we have replaced the
analysis of a single nonlinear modélifficult) with the
B. Parametrizing the intensity dependence analysis of a large number of linear models, one for each

The model impedanc@gy(8)=1/Ygyu(B) character- hoise intensity(easie. Although the net result is a substan-
izes the motion of the cochlear partition at sound levels irfial simplification of the analysis, the substitution is valid
the low-level linear regime near threshold. Preparatory t®nly for quantities, such as cross-correlation functions, mea-
modeling the intensity dependence, we follow othées., sured with wideband noise stimulde Boer, 199Y. Note,
Neely, 1983; Zweig, 1990; de Boer and Nuttall, 2D@hd however, that the phenomena we explore here—the

write Zgy, in the form intensit)_/—invariance of fine time structure in mechanical and
neural impulse responses—is robust to the measurement
Zgm(B)=Zy(B)+Z4B), (4 technique and is seen in derived impulse responses measured

representing the sum of a “passive” and an “active” com- with noise stimuli(e.g., de Boer and Nuttall, 1997, 2000;
ponent. The impedancg,() characterizes the local effect Carneyetal, 1999.
of force generation by outer hair ce®HCs; the imped-
anceZ,(B) characterizes the mechanics of the partition ob- Admittance poles of a simple oscillator
tained when those force generators have been disabled. This
“two-component” form of the impedance is consistent with To probe the origin of the near-invariance of fine time
the experimental findings of de Boer and Nuittall, as reflectegtructure in cochlear responses, we first consider a simpler
in their solutions to the inverse problem in guinea pig ~ example: the impulse response of an harmonic oscillator and
Boer and Nuttall, 2000 Note that the impedances are as-its relation to the poles of the admittance in the complex
sumed to scale and are therefore written as functions of thelane. The admittanc,,, of a simple harmonic oscillator—
scaling variabled(x,f) = f/f cx(x). such as the passive resonator later assumed to characterize
In the spirit of the EQ-NL theorerfde Boer, 199Yand  the cochlear partition at high sound intensities—has the form
its application in guinea pi¢gde Boer and Nuttall, 2000we ”
then model intensity dependence by defining a family of lin- Y (f _ M ,
ear models in which the effective strength of the active force . fS— f2+i opffy
generators is parametrized by the facfor

(6)

wheref , is the resonant frequency in the limit of zero damp-
Zem(BiY)=Z(B)+ vZAB), (5)  ing andd, is the dimensionless damping constant. Introduc-

- ing the normalized frequency=f/fce for future conve-
){/;/]here thﬁ[ rzal pﬁameltgrse_lflsﬂes @5b7$1 ‘?.d (ljepends ton Hjence, we now rewrite E|6) to expressy, in terms of the
e amplitude of local basilar-membrane displacement, angl .. oo ¢ e poles. Equatiois) becomes

thus, indirectly, on stimulus intensity. To indicate this depen-
dence we writey=y(l/1,), wherel is the intensity and, a ilv
reference that sets the scale. In the low-level linear limit near ~ Yp(£)* (_—_*
threshold (1), yis approximately 1, independent bfat £= 56—
high intensities (>1,), y approaches 0. At intermediate in- where the normalized pole locations are denoted and
tensities,y is presumed to vary monotonically between 1 and— % , and the variablé represents the complex extension of
0; its precise value at any given intensity depends on théhe real variabled, defined so that equalsg along the real
form of the nonlinearity associated with the active force gen-axis (8=Re€{{}). The superscripted asterigk) denotes com-
erators(e.g., the form of the saturating displacement—voltageplex conjugation. The positive-frequency pole, at location
transduction function of the OHC stereodjlfa {« , has real and imaginary parfs =8 +iay , where the
Each value ofy yields a corresponding linear model, constants ay=vé§,/2 and ,8X=v\/1—(5p/2)2, with »
M(). According to the EQ-NL theorem, the linear model =f,/fce=|{|.
M(7y) has the same input—output cross-correlation function  Since the impulse response of the oscillator has the form
as a nonlinear model in whida) the low-level linear limitis  sin(27B, 7)e 2"*x", wherer=tf ¢ is normalized time, we
described byM(1) [i.e., by Eqg.(5) with y=1] and (b) the  see that the real part of the pole locatigh() corresponds to
effect of increasing stimulus intensity is partially to saturatethe normalized natural frequency of oscillation and the
the active force generatofs.g., the OHCE reducing their imaginary part &) to the decay constant of the envelope.

)
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This correspondence implies that by varyimg while hold-  A. The impedance of the cochlear partition,  Zgy(B)
ing By« fixed one generates a family of oscillatbrshose

impulse responses differ in their envelopes but maintaiqhe low-level linear regiméy=1), we adopt a variant of the

identical underlymg frequencu_as of oscnla_uon. In other model impedance obtained by solution of the inverse prob-
words, moving the poles along lines perpendicular to the rea\l

) . em in the squirrel monkeyZweig, 199). We use this
frequency axis changes the envelope of the impulse reSPONLHdel both for its convenient analytic form and because it
while preserving the fine time structure of the waveform.

constitutes perhaps the simplest system that displays many of
the qualitative features of the real cochlea. In the model, the
D. Conjecture BM impedance scales a}nd has 'Fhe form 'qf an harmonic os-
) ) _ o cillator, with a netnegativedamping, stabilized by a feed-
Analysis of the harmonic oscillator indicates that pack force proportional to the oscillator displacement at an

intensity-invariance of the impulse response timing corregaylier time. The model admittance has the foffweig,
sponds to movement of the admittance poles along lineggg1)6

nearly perpendicular to the real frequency axis. Applying

these ideas to the motion of the basilar membrane, we recall V() iB ©
from Eq.(3) that the velocity impulse responseyy(7;y), is Bu (A 1—B2+i 6B+ pe 2mikb’

the convolution ofp(7;y) andygu(7; ). Sinceygu(7;vy) ) )

depends on the analytic structure of the mechanical admitvhere the dimensionless paramei@rrepresents the net
tance,Ygw(B;7y), in the complex plane, our results from the d@mping (with 5<0); and the dimensionless parameters
oscillator example would carry over immediately if the driv- @nd w characterize, respectively, the strength and the time
ing force producing the motiongy(7;y) were a single im- delay(in periods of the local resonant frequenof the sta-
pulse applied locally, as it is for the oscillator. In the cochlea,Pilizing feedback force. .

however, the driving force consists of the traveling pressure ~ The parameter values found by Zwetp91) imply that
wave, p(7;y), whose dispersive character introduces addgithe admittance/'gy(8) has, among an infinite series of poles
tional time and frequency dependen@eg., Shera, 2001  in the complexg (or {) plane, two closely spaced poles just
We note, however, that the traveling pressure wave is notoove the real frequency axis nedr=1." By making both
independent of the mechanics of the partition; indeed, théhe impedance magnitude and its derivative s.mall at frequen-
pressurep(7;y) depends intimately on the spatial variation ies near CF, the two closely spaced pole¥ () help

of the admittance, and the intensity dependence(afy) is ~ create the tall, broad peak of the transfer functi@gweig,
ultimately determined by that ofgy(3;7). We therefore 1990. The model variant used here has the same functional
conjecture that our conclusions from the oscillator apply alsdorm as the original, but differs somewhat in its parameter
to cochlear mechanics. In particular, we suggest that th¥alues. By using slightly different parameter values, we can
near-invariance of fine time structure in BM impulse re-Mmake the two closely spaced poles coincident without sig-
sponses implies that the poles of the effective BM admit-nificant effect on the corresponding transfer functishera,
tance remain within relatively narrow bands of the complex1992; Zweig and Shera, 1995-or ease of analysis, we use
plane oriented perpendicular to the real frequency axis as tH8iS simpler “double-pole” form of the admittance. The
parametery (i.e., stimulus intensityis varied. If our conjec- Model parameter values are thus determined by specifying
ture is correct, the natural resonant frequencies of the cdhat the two poles principally responsible for the peak in the
chlear partition, defined by the real part of the admittancedmittance neap=1 coincide at a given distance from the

and the additional parameteX, representing the approxi-

mate number of wavelengths of the traveling wave on the
Ill. TESTING THE CONJECTURE basilar membranéZweig et al, 1976; Zweig, 199F were

. . . . chosen in order to produce a BM velocity impulse response
We now explore this conjecture using a simple model of

. . . that peaks after about ten periods of the characteristic fre-
coch!gar mechamc;. The model defined by Ei)|.r§qU|res uency(in rough agreement with data at low sound—pressure
specification of two impedances. For later convemence—anﬁeveIS from guinea pig and chinchijla
because it corresponds with the procedure for estimating
these impedances experimentallyg., Zweig, 1990; de Boer
and Nuttall, 200p—we take the two impedances to be those
obtained(1) in the low-level linear limit[i.e., Zgu(B;1)] We take the impedance that characterizes the passive
and (2) with the active mechanisms disablefi.e., (y=0) system,Z,(B), to be a simple harmonic oscillator

Zgw(B;0)]. Note that we can writ&,(8) =Zgy(B;0) and  with positive damping? This form is consistent with recent

To characterize the response of the cochlear partition in

B. The passive impedance, Z,(f)

Z4(B)=Zem(B:1)—Zy(B). Thus, attempts to fit experimental data obtained from the basal
N _ turns of the cochlea in passive preparatioang., Mammano
Zem(B:7)=Zp(B) + Y1 Zem(B) = Zy(B)], 8 and Nobili, 1993: Brass, 2000Initially, we take the reso-

where we defin&Zgy(B8)=Zgw(B;1) as a notational short- nant frequency characterizing the passive systég) (o
hand. In the following sections we discuss our model formshave a value approximately equal to the local CE., v

for the low- and high-level impedanc&sy(8) andZ,(8) =f,(X)/fcX)~1]. We explore the implications of this
appearing in Eq(8). choice of resonant frequency in Sec. Il D. To reflect the
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BM Impedances = BM Transfer Functions
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FIG. 3. Admittance pole trajectories for modét~. The figure shows
trajectories in the{ plane of the principal positive-frequency poles of
Yam(¢;y) for model M~ (y) as a function ofy. At y=1, Ygu({;y) has a
double pole(*) at £, ~1.03+i0.04. Asy decreases the two poles separate
slightly and move out along the solid lines in the directions shown by the
arrows. MarkergxX) measure off equal intervals of spanning the range
0-1 in steps of 0.1. A third pole near f¢=0.3 contributes to shaping the
“tail” of the transfer function. In the limity—0, all but one of the poles
move off towards infinity, and the admittan¥gy({; y) becomes a passive
harmonic oscillator,Y,({), characterized by a single pole gt=1.03
+i0.17.

FIG. 2. Intensity dependence of BM impedances and velocity transfer funcCOMeS everywhere positive, the influence of the active force

tions for modelM™. The left-hand panel shows the re&dp) and imagi-
nary parts(bottom of the BM impedanc&gy,(B;y) for eleven values ofy
spanning the range 0-1 in steps of 0.1. Units are defined so that the prop
tionality constant in Eq(9) for Ygy(B8) equals unity. The right-hand panel
shows the amplitude$op) and phaseghottom of corresponding BM trans-
fer functions, T(B;y). The dimensionless frequency variatge=f/f -(X)

0,

generators in shaping the impedance remains evident at even
the highest intensities. These changes iRZRg(3;v)} are
%ccompanied by corresponding, although less dramatic,
changes in the reactive component of the impedance. At all
intensities the reactive component remains negative, resem-

increases along the abscissa. The vertical dotted lines locate the peak of thging a stiffness, throughout the region of the transfer-

transfer function in the low-level linear limity=1).

approximate equality of , and fcz, we denote the model
M~ .M with functional forms now specified for bofy, and
Zgw » the “active impedance,’Z,, can be obtained by sub-
traction. Equation(8) allows us then to computégy(B;vy)

as a function ofy by interpolating between these extremes.

M~
1. Transfer functions and impedances

Figure 2 shows the impedanc&gy(B;y) and corre-
sponding BM transfer function3(B;vy) for values of y
spanning the full rang€0,1]. The model transfer functions

C. Results for model

function peak B<1.03)!° Note that the changes in
Im{Zgn(B;v)}, as with those in R&Zgu(B;7y)}, depend
strongly on location and frequency. Near the peak the co-
chlear amplifier acts to reduce the effective stiffness, and this
reduction diminishes at higher intensities; thus, changes in
Im{Zgzu(B;v)} are such that the effective stiffness, like the
effective damping, increases with intensity.

2. Admittance pole trajectories

Figure 3 shows the locations of the principal, positive-
frequency poles of the modeld™ BM admittance,
Yem(<;y), as a function ofy. [By principal poles we mean
those whose projection onto the real frequency axis falls near

and impedances—both their form and their variation withor below CF(i.e., |8x|=<1, where3x=Re{.}). The re-
intensity—bear a strong qualitative resemblance to thosenaining poles, located substantially above ‘¢&re less im-
measured experimentally or obtained using the invers@ortant in shaping the peak of the transfer funcfichhe

method (cf. Figs. 2—4 of de Boer and Nuttall, 2000~or
example, at the lowest effective intensfty=1), the real part
of Zgm(B;y) is negative over an extended region ®fust
basal to the response peak@t1. (In this description, we

lines trace out the trajectories of the principal polesyds
decreased from 1 towards 0. Fer=1 (i.e., in the low-level
linear limit), two poles coincide close to the real axis near
Re{£}=1.03. Coincident poles are shown with an astefigk

have used scaling to regard the figure as illustrating modeA third pole near RE}=0.3 contributes to shaping the

impedances and transfer functions versus cochlear location
fixed frequency?) The traveling wave is amplified as it

aail” of the transfer function. In addition to these three
principal poles (and their counterparts in the negative-

propagates through the region of negative damping. Afrequency half plane Ygu(¢;y) has an infinite string of

smaller values of y (i.e.,, at higher intensitigs

poles at higher values of Rg (Zweig, 199). Note that the

Re{Zgw(B;v)} increases towards 0, the region of amplifica-two coincident poles occur slightly above CF at a vahije

tion narrows, and the total gain decreasas measured, for
example, by the height of the transfer-function peaks

=Reg{{, }~1.03 greater than 1. This value gflocates the
normalized natural “resonant frequency” of an isolated sec-

intensity increases further, the region of power amplificatiortion of the cochlear partition and corresponds closely to the

rapidly shrinks to zero and disappeafi® this case, at

y~0.55. Although the real part of the impedance then be-
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point in Fig. 2 where the imaginary part dgy(3;7)
crosses the zero line.

Christopher A. Shera: Intensity-invariance of fine time structure



| Pressure p(T;Y) Model M* 1]

R T I FIG. 4. Impulse responses and their instantaneous-
Pressure frequency trajectories for several valuesjoin model
M?=. The figure shows impulse responsgsft) and
corresponding instantaneous-frequefiy) trajectories
(right) for model pressure, admittance, and velocity re-
sponses(top to bottom, respectively Responses are
I shown as a function of the dimensionless time variable
m=tfce(x) for y={1,0.95,0.7,p, with darker lines in-
dicating larger values of (i.e., lower intensities IF
trajectories were computed as described elsewhere
(Shera, 2001 The sharp notches apparent in the IF
trajectory forygy(; v) (e.g., nearr~14 for y=0.95 or
=6 for y=0.7) reflect transient phase reversals in the
corresponding impulse response that result from beating
MMMMMMMMMMM — between contributions from the two poles in the admit-
Velocity tance nearf~ f (cf. Fig. 3. Note how the fine time
structure for all three responséise., pressure, admit-
tance, and velocifyremains approximately independent
of y (i.e., of intensity. Indeed, the corresponding IF
trajectories can be difficult to distinguish in the plot;
their asymptotic values generally differ by less than 5%
over the entire range of.

» n‘ Admittance

<
PR

Model Impulse Responses
T

Instantaneous Frequency / CF

T T T T 1 0 T - 1 T T 1
0 5 10 15 20 25 0 5 10 15 20 25
7 =Time XCF 7= Time XCF

How do the poles move with intensity? Asdecreases the stapes As y decreasesi.e., as intensity increasgshe
from 1, the double pole splits apart, and the poles move outesponse envelopes shrink in sigbe nonlinearity is com-
along the solid lines in the directions shown by the arrowspressiveé and peak at progressively earlier times. Note, how-
The symbols(X) mark off equal intervals ofy along each ever, that despite these changes in the envelope of the re-
trajectory. Asy approaches 0, all but one of the polemd  sponse, the fine time structure remains almost independent of
its counterpart in the negative-frequency half-planeve  y. For example, the asymptotic values of the IF trajectories
off towards infinity. In the limity—0, the mechanical admit- differ by less than 5% over the entire rangeyof-requency-
tanceYgy(¢; y) takes the form of a passive harmonic oscil- domain analogues of these intensity effects—namely a
lator (Y,) characterized by a single pole nedr—1.03 strong reduction in peak amplitude accompanied by rela-
+0.17. Recall from Sec. Il B that the parameters of the tively small but systematic changes in phase below(€§.,
oscillator Y(8) characterizing the passive system at highRhode and Recio, 2000-can be seen in the model BM
sound levelgy=0) were chosen so that its single pole would velocity transfer functiond (3;y) shown in Fig. 2.
lie almost directly above the double pole characterizing the
combined(i.e., “active+passive’) system at low levelgy
=1). In other words, the natural “resonant frequencies” of D. Other models of intensity dependence
the two sysFems,_ given by the real parts of the pole IocaFions, In model M~ described above the approximate invari-
are nearly identical. As a consequence of the approximatgnce with intensity of the fine time structure of the impulse
alignment of pole locations at the two extremigs=1 and  egponse is a direct consequence of the roughly vertical
y=0)—and the corresponding invariance of natural resonanfjignment of admittance-pole locations about the line
frequencies—the poles at intermediate valuesydlso re- Re{¢}=1.03. We illustrate this point by considering two

main fairly close to the line Rg} = 1.03. Although the poles  yher heuristic models of the intensity dependence of the BM
separate slightly, they do so almost symmetrically about the ymittance.

line RE¢{}=1.03, so that their mean frequency stays nearly
constant. 1. Model M=

In model M=, the resonant frequency of the passive
If our conjecture is correct, we expect the fine time admittanceY,(5) obtained in the limity—0 is taken to be
structure of the model impulse responses to be approxiroughly one-half octave below CH.e., v=f(x)/fcx(x)
mately independent of intensitisince the poles of the ad- ~./2/2]. As a consequence of this half-octave downwards
mittance are confined to a relatively narrow strip of the com-shift in resonant frequency, the admittance-pole trajectories
plex plane. Figure 4 demonstrates that mod&l~ does are no longer confined to the vicinity of the line {ge=1.03.
indeed capture this symmetry of the data. The figure showas illustrated in Fig. ), the pole closest to the real axis
model pressure, admittant®,and velocity impulse re- moves off to lower frequencies asdecreases; ag=0, the
sponses, along with corresponding instantaneous-frequen@ple converges on the passive polgat0.77+0.17. Figure
(IF) trajectories, computed at several valuesyofAs dis-  6(a) shows that this variation in resonant frequency destroys
cussed above, the responses at diffenenain be interpreted the near-invariance of fine time structui@. model M~ in
as derived impulse respong@sput—output cross-correlation Fig. 4). As expected, the asymptotic frequencies of corre-
functiong obtained from a single nonlinear model at differ- sponding IF trajectoriegot shown vary systematically with
ent intensitiegand subsequently normalized by the input aty, decreasing by roughly half an octavejaapproaches 0. In

3. Impulse responses
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04

0.2 1 T

v=1

form of the impedance, as we did in model$™ and M,
we varied the imaginary part of the double pole diretige
Note 8. By varying the imaginary part of the double pole
(denoteda, =Im{{, }, where the subscripted asterisk sym-
bolizes a double pojewe constrain the principal poles of the
model admittanceYgy({; @, ), to move along a nearly ver-
tical line in the complex plangi.e., along a line3,
~constant)!® As a consequence of this difference in model
structure, the modeM ™ impedancesZgy(B; a, ), are only
approximately of the two-component form given by ES).
Figure 8b) shows that near-vertical alignment of admittance
pole locations yields near-perfect invariance of fine time
structure. The corresponding frequency-domain transfer
y functions[see Fig. Tc)] are, on this scale, almost indistin-
0.0 M"Ideljlw — guishable from those of modei~.

Im{C}

Model M~
0.0 F—————

04

024 %

Im{C}

04

¢ E. Recapitulation

@023 % Figure 8 summarizes the intensity dependence of the
0.2 » fine time structure in each of the three modsise also Table
o,=0.04 I). ModelsM™ and M~ manifest the near-invariance of fine
T oy time structure seen in measured responses, and in these mod-
00 Model M= 004 els the poles of the BM admittance move along trajectories
‘ NV roughly perpendicular to the real frequency axis. We suggest
0.2 0.4 0.6 0.8 1.0 1.2 g . h
that this result applies to the real cochlea: The approximate
B=Re{L} invariance of the fine time structure of the impulse response
) ) o implies that the poles of the effective BM admittance remain
FIG. 5. Admittance-pole trajectories in the complex plane. The three panel§vithin relatively narrow bands of the complex plane oriented
[(@), (b), and(c)] show trajectories in thé plane of the principal positive- . . ] .
frequency poles of the BM admittance for three different model formsP€rpendicular to the real frequency axis as the stimulus in-
(M™, M=, and M~) of the intensity dependence. Para), reproduced  tensity is varied. We expect our conjecture to apply so long
from Fig. 3, shows the pole trajectories for model™ as a function ofy. At as the driving pressure force(r;y) inherits its intensity

v=1, Ygu(¢; y) has a double polér) at £, =1.03+i0.04. Asy decreases ; ; ; :
the two poles separate slightly and move out along the solid lines in théjependence through the admittance, as it does in simple

directions shown by the arrows. Markers) measure off ten equal intervals models. PhySica”Yv our conjecture implie_s_ that the natur_al
of v spanning the range 0—1. In the limit=0, all but one of the poles move resonant frequencies of the cochlear partition are nearly in-

off towards infinity, and the admittancés\y(; v) becomes a passive har- dependent of intensity. Put yet another way, the feedback

monic oscillator,Y,(£). Panel(b) shows the pole trajectories for modet = forces generated by the outer hair cébs, more generally
as a function ofy. As in panel(a), markers(X) measure off ten equal ! ’

intervals of y spanning the range 0—1. In modgk<, the resonant fre- by the “cochlear amplifier'} do not significantly Ch?‘hge the
quency of the passive admittandé(B) obtained in the limity—0 is  natural resonant frequencies of the cochlear partition.
roughly one-half octave below CF. For comparison, the gray lines show the

trajectories from modeM ™. Panel(c) shows the pole trajectories for model “ "
M~ as a function ofa, , the imaginary part of the double pole of the IV. CONSISTENCY WITH THE "HALF-OCTAVE SHIFT

admittance. Marker6x) measure off ten equal intervals @f spanning the Is our conjecture that the resonant frequencies of the
range 0.04-0.25. In modeM ™, the double poles of the admittance . . . .

Yewu({:a,) move along a curve nearly perpendicular to the real frequencycpChlear partition are near_ly mde_pendent of intensity contra-
axis. Note that all three models are identical in the low-level linear limit dicted by the well-known intensity dependence of the peak
(i.e., for y=1 in modelsM™~ and M~ and fora, =0.04 in modelM~). (or besj frequency of the BM transfer function, which shifts

to lower frequencies at higher intensities? Reference to the

the frequency domain, the model BM transfer functigsse ~ responses of models4™ and M™ in Fig. 7 demonstrates
Fig. 7(b)] manifest unrealistically large shifts in peak fre- that the answer is “No.” Note, for example, that although

quency as well as considerable changes in phase below Ckhe poles of the modeb™ admittance move nearly
vertically—and the resonant frequencies are therefore essen-

_ tially independent of intensity—the best frequen®&F) of

2. Model M the transfer function shifts systematically with level from a
Our analysis predicts exact invariance of fine time strucpeak atf/fcg=1 (for a, =0.04) to a peak roughly one-half

ture when the poles of the admittance move along verticabctave lower(at o, =0.25). ModelsM™ and M~ therefore

lines. The pole trajectories of modah~, illustrated in Fig.  reproduce the “half-octave shift” in best frequency without

5(c), approximate this ideal, limiting case. To achieve near-any corresponding change in the underlying resonant fre-

perfect alignment of the pole positions in model~, we  quencies of the system.

began, as before, with the double-pole form of the BM ad-  If the half-octave shift does not reflect a change in the

mittance described in Sec. Ill A. But rather than simulatinglocal resonant frequency of the cochlear partitierg., due

intensity dependence by varying in the two-component to a change in stiffnesswhat then is the mechanism that

Im{C}
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Model Impulse Responses
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17 =Time XCF 1 = Time XCF

FIG. 6. Impulse responses for two different model formd { and M ™) of the intensity dependence of the effective BM admittance. Rahehows model

M= impulse responses for several valuesyof\s in Fig. 4, the figure shows impulse responses for model pressure, admittance, and velocity résponses

to bottom, respective)y Responses are computed fpr{1,0.95,0.7,p and are normalized by input at the stapes so that response amplitudes decrease at
smaller values ofy (i.e., at higher intensitiesin model M=, the resonant frequency of the passive admitta¥ige) obtained in the limity—0 is roughly
one-half octave below CF. Note how the fine time structure of the response varies strongy(iéth with intensity. Panel(b) shows modelM ™ impulse
responses for several valuesaf. Responses are computed fey ={0.04,0.05,0.1,0.35and normalized by input at the stapes so that response amplitudes
decrease at larger values af, (i.e., at higher intensitigs In model M~, the double poles of the admittandgy(¢;«,) move along a curve nearly
perpendicular to the real frequency axis. As a result, the fine time structure is essentially independent of intensity.

Amplitude [dB]

Model M~ Model M< Model M=
"7
£
O
>
&
L
o
<
=
Ay
3da b :
—_—————— ————————
0.5 1.0 0.5 1.0 0.5 1.0

B = Frequency / CF

FIG. 7. Intensity dependence of model BM velocity transfer functions. The three géaeld), and(c)] show the amplitudétop) and phasébottom of the

BM velocity transfer functionBM/stapes for three different model formsXt~, M=, and M~) of the intensity dependence of the BM admittance. Panel

(a) shows transfer functions for modét~, defined by the admittance-pole trajectories in Fig).5Reproduced from Fig. 2, the mod#tt™ transfer functions

are shown for values of corresponding to the marke(x) in Fig. 5a) (i.e., for eleven values spanning the range 0—1 in steps of B.Inodel M~, the
resonant frequency of the passive admitta¥iggB) is equal to CF. Panéb) shows transfer functions for modal = at the values ofy given by the markers

on the admittance-pole trajectories of Figb) In model M=, the resonant frequency of the passive admittaricés roughly one-half octave below CF.
Panel(c) shows transfer functions for moddi ™~ at the values otx, given by the markers on the admittance-pole trajectories of k@. Bi model M ™,

the double poles of the admittan¥gy,({; «,) move along a curve nearly perpendicular to the real frequency axis. Note that all three models are identical in
the low-level linear limit.
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TABLE I. Summary of the three different model forms of the intensity

AP— dependence of the effective BM admittance discussed in this paper.
1
Summary of models
> Model Description Formula Invariance?
| ;
- Model M= M= Resonant frequency of,, fp(X) = fer(X) Very good
”/“/”5’/“ , ) approximately equal to CF
O ANV AR e M© Resonant requency ofy ()~ fcdX)NZ  Poor
2 LA ; : approximately one-half
7 octave below CF
§ A M= Poles of the BM admittance B, ~constant Excellent
= 1 ; move along lines nearly
- : : : perpendicular to the
% PI" ; real frequency axis
a - ////// E Model M<
[} : y .
g ) /////;//////////;////,. _ o _
e —~ A WWWWWWWAAA A A the cochlea, consists primarily of frequencies below CF.
E : 2 3 Thus, as the duration of the driving pressp(e; y) shortens
w AN with increasing intensity, the period of the glide becomes an
3 1 : ever-increasing fraction of the total duration of the response.
st § : : As a result, the motion of the membrane at the measurement
2 : : location becomes more and more dominated by driving fre-
g \ ‘ ‘ \ : Model M= guencies lower than CF. The peak of the velocity spectrum
= 0 ‘ I | l P, e (i.e., the best frequengy therefore shifts to lower

frequencies! Thus, as with the glidéShera, 200}, the shift
| : : in BF arises not through thiecal properties of the cochlear
10 20 30 partition—the resonant frequencies %k, change neither
1= Time XCF with time nor with intensity—but through thglobal proper-

o o o _ ties of the driving pressure.
FIG. 8. Variation of fine time structure in impulse responses for three dif-
ferent model forms (1~, M=, and M~) of the intensity dependence of A. Complementary shifts in best frequency and
the effective BM admittance. In the top panel, the nearly vertical linespgndwidth
represent trajectories, traced out as the parameigwvaried over the inter-
val [0,1], marking the times of occurrence of corresponding peaks in the In addition to the half-octave shift, models1™ and

model-M~ BM velocity impulse response. So that intensity increases fromM= capture another important characteristic of the intensity

top to bottom along the axis, the surrogate valueylis shown along the . . . .
ordinate. Time is plotted along the abscissa in units of periods of CF. Nor-dependence of BM transfer functions. As illustrated in Fig.

malized response waveforms, corresponding+® andy=1, respectively, 7, the best frequency Changes relatively little over the first 30
appear at the top and bottom of each panel. At each surrogate intensitglB reduction in peak amplitude; the bulk of the frequency

trajectories are plotted over a total time interval equal to three times theshift occurs at the highest intensities over a relatively small
energy-weighted average group delay of the resp@ngecated to the near-

est whole periof The middle panel shows trajectories for modél~ in the

o —

same format as the top panel. The bottom panel shows trajectories for model 12 5
M?7~. The ordinate shows values af, in the rangg0.04,0.23 remapped Model M= y=1
linearly onto the interval [0,1], using the equation a, =[a, 104
—min(a,)]/[max(a,)—min(a,)], for consistency in the display. The
three vertical dotted lines spanning the figure mark selected peaks in the 8 -
model-M~ waveform. -
SN
creates the shift in best frequency? The answer—as with the 4
origin of the glide(Shera, 200f—is to be found not in the
admittance, but in the driving pressure; not locally at the 2
point of measurement, but globally in the spatial variation of 0 : YZ‘O : : i : |
geometry and mechanics that underlies the cochlear map. To 05 06 07 08 09 10 11 12
see this, consider modal™ and recall that the BM velocity BF/CF

impulse responseygy(7;y), is the convolution ofp(7;y)
andygm(7; ) [EQ. (3)]. Although the best frequency of the FIG. 9. Intensity dependence of transfer-function bandwidth and best fre-
admittance spectrum is nearly independent of intensity, thguency in modelM™. The figure plots theQs, vs the normalized best

: : T guency(BF/CF of the model transfer-functiol(3; y) with y as param-
same is not true of the pressure. As intensity increases, tHe er.Qyis defined as the ratio BB/f 1o, whereAf,,is the transfer-function

amplification of the traveling pressure wave is reduced. AS andwidth 10 dB below the peak. The dots mark the eleven values of
consequence, the pressure impulse resppisey) decays corresponding to the markers on the admittance-pole trajectories in Fig. 3;
from its maximum amplitude more quickly and its “center of they span the range 0-1 in steps of 0.1. The dotted line marks the value

energy” moves to earlier timegsee Fig. 4 Because of BF/CF=1_ obtained in the low-level linear limit near th_reshold. Note that
changes in BF an@,, occur over complementary intensity ranges: Most of

traveling-waye dispersio{Shera, ZO.O)l how.ever.,p(q-; y)at e change in BF occurs for<0y=0.5; most of the change i@, for
early times is dominated by the glide, which, in the base ob.ssys<1.
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FIG. 10. Impulse-response durations in moddl~. The figure shows the Model M< B=0.5
durations of the impulse responsgér;y) (solid line), ygu(7;y) (dashed -
line), andvgy(7;7y) (dotted ling as a function ofy. Response duration is : — — . — .
defined here as the tim@ periods of the CFat which the envelope of the .05 0.0
response decays to 10% of its peak value. As expected from the convolution .
in Eq. (2), the duration ofugy(7;y) is approximately equal to the sum of Resistance of Za

the durations op(7;y) andygu(7;y). The gray line shows the duration of

the glide in the pressure(r,y), defined as the time at which the instanta- FIG. 11. Polar plot of the impedan@g(3) for modelsM™ and M=. The
neous frequency reaches 90% of CF. Its value is independentNidte that ~ two black curves trace out the re@ésistive and imaginary(reactive parts
the durations op(7;y) andygy(7;y) become comparable to the duration Of Z(8) as 8 varies over the intervdl0.5,1.] containing the peak of the

of the pressure glide at~0.5, corresponding roughly with the value pft transfer function. Dots on the two curves indicate equal interi@a5 of S.
the bend in the curve of Fig. 9. The gray lines show how the effective impedang#,(8) changes agy
decreases to 0 in steps of 0.1. Dotted lines mark the positions of the real and
imaginary axes.
part of the total dynamic range. The curve shown in Fig. 9
quantifies this nonuniform shiftin BF for model™. Figure  representing the sum of a passive and an active component
9 also illustrates how changes in the best frequency an@zp andZ,, respectively, where the coefficient aZ,, varies
bandwidth of the response occur over complementary pariith intensity. For purposes of explication we have regarded
of the intensity range, in agreement with experimental datgne two modelsM™ and M <—uwhich are, by construction,
(e.g., Maller, 197Y. Note, in addition, that the slope of the identical in the low-level linear limity=1)—as differing in
curve indicates that the bandwidth of the transfer function ishe form of the underlying passive impedancgs, In par-
a strong function ofy at values ofy close to 1. Even small ticylar, the passive impedances in these two models were
reductions in the effective strength of the cochlear amplifiekaken to differ in the locations of their resonant frequencies
(€.9., due to surgical traumean therefore produce relatively rejative to CF. To explore the implications of our results for
large changes in the bandwidtand group delayof the re-  cochlear biophysics, we now take a complementary view and
sponse to threshold-level sounds. ask: What constraint does the intensity-invariance of BM
The nonuniform shift in best frequency with intensity resonant frequencies place on the mechanical effects of force
can be understood from the conceptual model used to explaigeneration by outer hair cells, as characterized by the active
the half-octave shift. The model suggests that shifts in the Bimpedancez 218
of vgu(7;y) remain relatively small so long as the impulse
responsep(r;y) andygy(;vy) last longer than the duration
of tfle pressure glide. Figure 10 compares these durations é& Two-component form of - Z,(f3)
a function ofy for model M ™. Although quantitative details We begin by examining the form df,(8) in models
depend on precisely how one defines the duration of the\/™ and M~. For impedances of the two-component form
response, model results are qualitatively consistent with thél0), the active impedancg,(8) can be obtained by simple
conceptual analysis. At valueg=0.5, both p(7;y) and  subtraction of the impedanc&sgy(8) andZ,(B) character-
yem(T; ) last longer than the duration of the glide, and theizing the low- and high-level linear limits, respectively:
BF therefore changes relatively little with intensiisf. Fig.  Z(8) =Zgm(B) —Z,(B). Figure 11 shows a polar plot of the
9). At valuesy=0.5, however, the durations of bofif; y) impedanceZ(8) for the modelsM™ and M=. For refer-
andygw(; y) become comparable to or less than the lengthence, Fig. 12 shows corresponding valueZ gfi(3;y) and
of the glide, and intensity-related shifts in BF become largertheir variations withy. The solid curves in Fig. 11 trace out
the real and imaginary parts of the model impedantg¢s)
as 3 varies over the intervdl.5,1.1 containing the peak of
V. CONSTRAINTS ON THE MECHANISMS OF the transfer function. We focus on this region because out-
COCHLEAR AMPLIFICATION side the peak region the BM impedance obtained by solution
of the inverse problem is less reliablend its precise form
ess important in determining the shape of the transfer func-
tion).
Zgm(B:y)=Zy(B)+vZAB), (10 In both models,Z(B8) resembles a spiral arc, offset

In Sec. Il B we represented the total basilar-membran
impedanceZgy(8; ) in the form
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0.5+
E 1 FIG. 12. Intensity dependence of
N model BM impedance functions. The
L‘5‘ three panel§(a), (b), and(c)] show the
O - real (top) and imaginary partgbot-
8 0.0 - tom) of Zgy(B;y) for the three differ-
g ent model forms M~, M=, and
‘& M) of its intensity dependence de-
&) fined by the admittance-pole trajecto-

ries in Fig. 5. Pane{a) shows imped-
Model M< ances for modelM™~, reproduced

: from Fig. 2, at values of correspond-
ing to the markergX) in Fig. 5a).
Panel(b) shows impedances for model
M= at the values ofy corresponding
to the markers in Fig. (). Panel(c)
shows impedances for modél~ at
the values ofa, corresponding to the
markers in Fig. &). Units are defined
so that the proportionality constant in
Eq. (9) for Ygu(B) equals unity. The

Reactance of Zgy

0.5 1.0 0.5 s 1'0 ' 0'5 ST 1'0 impedances of all three models are

identical in the low-level linear limit.

B = Frequency / CF

from the origin and traced out clockwise at nearly constantn parts of the “tail” of the transfer function £=0.74)
“angular velocity” as g increases uniformly. Ay decreases while decreasing the stiffness throughout most of the peak
from 1, the spiral arcs contract towards the origin. Figure 1kegion (0.74< 8<1.03).
suggests that the impedangg(8) can be approximated as Significantly, m{zgpiral(ﬂ)} passes through 0, so that
the sum of two components: Z5P'y By is nearly real, just above CF @=1.03. In model
Z(B)~Zz5onstant. zspiray gy 1y M~ wherezg"”smmis also nearly real, the zero crossing of
Im{ZSP"™(B)} implies that the impedancg,(B) leaves the
reactive component of the total partition impedance near this
value of 8 essentially unchanged at all intensities. Reference
to Fig. 12a) shows that in modelM ™ the valueB~1.03 is

the impedancigonstant is negative reala negative resis- th_e value where the reactive componentZ_g(ﬁ) vanishes.
tance. In model M=, however,Z&"is complex, imply- Since I{Z,(B)} an-d IMZ4(B)} both vanish at the same
ing that it affects both the resistance and the reactance of thélue  of B, their sum, IniZgy(B;7)}=Im{Zy(B);
partition. These impedance changes, and their dependence drYIM{Z«(8)}, also vanishes at this point and does so inde-
¥, are evident in the plots &gy (3;y) shown in Fig. 12. pendent ofy. Note, however, that the vanishing of the reac-
The constant impedance change effectedzEff**"is  tance[zero crossing of IfZgy(5;y)}] locates the approxi-
modulated with frequency bzg"‘ra‘(ﬁ), and these modula- mate natural resonant frequency of the partitfee., the
tions appear inZgy(B;7y). For example, the real part of projection of the nearby pole of the admittanggy(S;y)
Zgm(B;y) manifests a bowl-shaped minimum centeredalong the real frequency a%i€ Our analysis of the imped-
roughly one-half octave below Csee Fig. 12 The depth  anceZ,(3) has therefore brought us full circle: In model
of the bowl, but not its “axis of symmetry,” varies witly, A1~ we conclude that the natural resonant frequencies of the

reaching its furthest negative excursionyatl (i.e., atlow partition must be nearly independent of intensity. In model
intensities. As discussed in Sec. lll C, these variations with M=, by contrast,Zg"”S‘a”t is large and complex so that

intensity are similar to those seen in impedances estimatel%{z
using the inverse methade Boer and Nuttal, 2000

The bowl-shaped form of R&gy(B;7y)} evident in
both models is created by the oscillation in{RE"?()},
which reaches a minimum negr=0.74 corresponding to the
bottom of the bowl. The impedan@®'®{ 8) also modulates " . o . .
the reactance, creating frequency oscillations in | Qur qnaIyS|s has thus identified the .constralnt that inten-
Im{Zew(3: 7)) that appear roughly 90° out of phase with the sity mvanance of the resonant frequenues places on the' me-
modulations in the resistance. As discussed below in Se€hanical effect of force generation by OHCs, as summarized
V B, oscillations in the resistance and reactance that appe#? the impedanceZ(B): While generally affecting a sub-
90° out of phase with one another are expected from causa$tantial reduction in the effective damping, the OHCs must
ity, which requires that the real and imaginary partZgfg) not significantly change the reactance of the passive partition
be Hilbert transforms of one another. In both modelsat frequencies in a neighborhood about its natural resonant
Im{ZP"¥{(B)} increases the effective stiffness of the partition frequency?*

where Z™®"is a frequency-independent component that
locates the center of the spiral ad@d"®(g) traces out the
spiral by circling abouzZ:°™"®™ The two modelsM™~ and
M= differ primarily in the form ofZ$*""*™ |n model M ™,

AB)} is always negative; in this model, therefore,
Z4(B) modifies the reactive component of the impedance at
all frequencies and intensitigsee Fig. 1%)]. As a conse-
guence, the resonant frequencies of the partition depend on
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Spiral Form of Z,

BM resistance FIG. 13. Summary of the argument
Stability —¥ modulated deducing the qualitative form &(8)
in space from general physical principletsta-
+ bility, local scaling, and causality
BM resistance The argument implies that(B) has
Scaling —p  modulated an approximately spiral form in the
with frequenc . . complex plane. The near-invariance of
1 Y BM reactance ) —¥ Z3(B) = C lockwise spiral the fine time structure in the impulse
+ modulated in complex plane response locates this spiral near the
Causality —p  with frequency real (i.e., resistive axis.
(similar amplitude
but 90° phase shift)
B. General argument for the spiral form of  Z,(B) in the low-level linear regiméZweig, 1991, we have used

general principlegstability, local scaling, and causaljitgnd
9 th imatel iral fthe i the intensity-invariance of the fine 'Fim(_a structure of the im-
M), the approximately spiral form of the impedaritg5) ulse response to deduce the qualitative fornz gf3) rep-

can be deduced from general principles. Figure 13 summ tina th lecti " f the OHCs. At f .
rizes the argument. For the cochlea to remain stable, thSenting the coflective action ot the S: requencies

about CF, the impedanag(8) must(1) be roughly spiral in

damping of the partition cannot everywhere be negative. Stz 2) rotate clockwi it ing f bout
bility requires that energy added to the traveling wave in on orm, ( )'ro ate clockwise with increéasing Irequency about a
genter with a negative real part, af®) intersect(or at least

region be absorbed in another; the amplifier must therefor hth |(resistive axi th tural ¢
create negative damping over only a finite region of the codPproach ih€ real{resistive axis near the hatural resonan

chlea (e.g., just basal to the peak of the traveling wave frequency of the passive partition.

Thus, the effective damping must be modulated in space.

According to local scaling symmetry, however, modulationc, implications for the origin of negative damping:
in space(at fixed frequencyrequires a corresponding modu- The fast-time-delayed stiffness model

lation in frequency(at fixed position. But in the frequency . . .
domain, causality implies that the real and imaginary parts of Among the most biophysically plausible models so far

an impedance are not independent; rather, they are H”begoposed for the origin of negative damping has been the

) : t-time-delayed stiffness modgNeely, 1983; Zweig,
transforms of one anothée.g., Bode, 1945; Papoulis, 1977 S : : .
Thus, frequency modulations in the dampifigal part are 1990, 1991 This model is based on the observation that a

necessarily accompanied by frequency modulations of simi':‘eg""t'ver damped oscillator can be created from one with

lar amplitude in the reactandémaginary pan?? Since the positive damping by the addition of a feedback force propor-
Hilbert transformer acts like a 90° phase shifterg., the tlopal to the oscnlgtor’s d|splgcement ata brevious tjcee,
Hilbert transform of a cosine modulation is -asing, the a time-delayed stiffinessThe impedance of a time-delayed

frequency modulationoscillationg in the damping and re- stifiness can be written in the form

actance are roughly 90° out of phase with one another. In Ke

Fig. 12a), for example, regions of local decrease in the Zi=—-e 'o7, (12

damping(e.g., nearB~0.6) correspond to local minima in o

the reactance oscillation, local minima in the dampieg@., whereK;>0 is the amplitude and>0 the time delay of the

the bottom of the bowl neg8~0.74) correspond to regions feedback force. Represented in vector form, a pure stiffness

of local increase in the reactance, and so on. As a consgsuch ask/iw) points along the negative imaginary axis.

quence of these coupled modulations in resistance and reathe time delay has the effect of rotating this stiffness vector

tance,Z,(8) must have an approximately spiral form traced clockwise through the angler;. For 0<wr<w the time

out clockwise with increasing (cf. Fig. 11. delay rotates the impedance vector into the negative real half
This general argument yields only the approximateplane, giving the impedancg; a negative real part. In this

shapeof the Z,(3) trajectory in the complex plane; it does configuration, the feedback force can therefore reduce the

not, of course, determine the radius of the spiral, the way thelamping of the system to which it is coupled.

radius changes wittg, nor the rate at which the spiral is An attractive feature of the model is that when the time

traversed. Neither does the argument locate the absolute pdelay is small compared to the period of the driving fre-

sition of the spirali.e., the value oZ°"™ in the complex  quency, so that

plane. As illustrated above in Sec. V A, the location of the 0< <1 13

spiral—straddling the real-frequency axis—is set by the re- o] <1, (13

quirement of near-invariance of fine time structure. If thethe resistive component &; is negative over a wide range

resonant frequencies of the partition are to remain invariantpf frequencies(specifically, for allf<1/27;). Thus, if the

the impedanc&(B) must leave the partition reactance un- feedback force is sufficiently strong and delayed by a non-

changed at frequencies near CF. zero time small compared to the oscillator’'s period, it can
Guided by simple models based on the inverse solutiorreate negative damping over a broad range of characteristic

lllustrated above for two specific moddise., M~ and
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frequencies without recourse to additional tuning mechasf17), this require$f¢f~25p.24 Recent attempts to fit experi-
nisms(such as having the time delay vary strongly with po-mental data obtained from the basal turns of the cochlea in
sition in the cochlea Transduction delays on the order of a passive preparations suggest ﬂ&EO.l (e.g., Mammano

few microseconds have been suggestéeely, 1983; Zweig, and Nobili, 1993; Brass, 2000Combining the equations
1990; we therefore follow Zweig and label the impedanceyields the inequality

Z; and its parameters with the subscript “f” for “fast.”
Note, however, that in addition to reducing the resistaidge, = wpi~26,/ pr=2(0.1)/0.2~1, (19
also generally changes the reactive component of the systeg constraint inconsistent with E¢13) and the assumption
(e.g., its stiffness Of course, whetheZ; produces a signifi-  hat the time delay is small compared to the oscillator period.
cant change iritherthe net resistance or reactance dependsy other words, the fast-time-delayed stiffness model cannot
on the system to which the impedance is coupled. In thgygvide sufficient force to counteract the damping without
paragraphs that follow we argue that in the context of COshifting the resonant frequency of the system beyond the
chlear mechanicsas currently understoodthe fast-time- |imjts allowed by the data. In effect, the fast-time-delayed
delayed stiffness model cannot provide sufficient force tostiffness model therefore yields an impedance similar to the
counteract the damping without also producing significantzgonstamof model M=, which fails to reproduce the near-
effects on the stiffness. invariance of fine time structure characteristic of the data.
Zweig (1991 analyzed the fast-time-delayed stiffness  The argument presented here does not, of course, rule
model in detail; we begin by recapitulating key elements ofgyt )| time-delayed stiffness models, but only the simplest,
that analysis. When the time delay is sufficiently fast to sati which the time delay is small compared to the period of
isfy Eq. (13), the complex exponential in Eq12) can be the characteristic frequency. More elaborate models for
expanded in powers of its argument: negative damping—e.g., those that invoke additional tuning
e =1 gr— %szfer o (14) mechar_ﬂ_sms_, such as having the _time_ delay depend strongly
on position in the cochlea—remain viable. For example, if
Keeping the first three terms yields the time delay in Eq(12) were to vary with position in-
versely with CF, so that;(x) wcg(X) = 7/4, then for frequen-

Zi=Kflo+RetioMy, (15 ciesf~f o the impedance; would contribute a nearly pure
where negative-resistance component and could presumably be ar-
ranged to produce only minor changes in the resonant fre-
R=—Krr and M= 3Kt (16)  quency of the systerr.

The impedance of the fast-acting feedback force thus has

mass and stiffness terms, together with a net negative resis-

tance. When added to a passive harmonic oscillatoth VI. SUMMARY AND DISCUSSION

impedanceZ), the feedback force therefore both reduces _ ) _
the effective damping and modifies the natural resonant fre-  Basilar-membrane and auditory-nerve responses to im-
quency. The combined systed},=Z,+Z;, has a net damp- pulsive acoustic stimuli—whether measured directly in re-

ing (Zweig, 19922 sponse to clicks or obtained indirectly using cross- or
reverse-correlation and/or Fourier analysis—manifest a strik-
Op— Piis ing symmetry. A symmetry is something that stays the same
Syt~ ——r, D ywh | | i
p T+ p while something else changes. In this case, the thing that

changes is the intensity of the stimulus; the thing that stays
where 5,>0 is the passive damping=K;/K, is the feed- the same is the phase of the oscillations in the response
back strength relative to the passive stiffness, afd waveform (e.g., Kianget al, 1965; Goblick and Pfeiffer,
=w,7;. The parameterk, andw,=27f, are, respectively, 1969; Robleset al, 1976; Carney and Yin, 1988; Ruggero
the stiffness and resonant angular frequency of the originakt al, 1992;: de Boer and Nuttall, 1997; Reaiv al, 1998;
passive oscillator. Similarly, the ratio of resonant frequencie€arneyet al, 1999; Lin and Guinan, 2000; de Boer and Nut-
becomes tall, 2000; Recio and Rhode, 2000n this paper, we have
N e explored the origin and implications of this symmetry for
For/fp= 1+ py. (18 cochlear mechanics, Applying the EQ-NL theorése Boer,
Consider now the constraints imposed by the near1997, we defined a family of linear cochlear models in
invariance of the zero crossings of the impulse responsevhich the strength of the active force generators is controlled
Figure 4 suggests that consistency with the data requires thhy an intensity-dependent parametgr\We conjectured that
the fractional change in resonant frequedttyf,— fp|/fp, due invariance of fine time structure implies that ass varied
to the feedback force be small, say no more than roughlyhe poles of the BM admittance remain within relatively nar-
10%. According to Eq(18), this requirement imposes an row bands of the complex plane oriented perpendicular to the
upper bound on the strength of the feedback fopges0.2.  real frequency axis. Cochlear-model responses, computed by
Now to create a net negative damping, the feedback forcextending the model obtained by solution of the inverse
must be strong enough thal;<0. Analysis of the imped- problem in squirrel monkey at low sound levelBweig,
anceZgy(8) obtained using the inverse method suggests thd991) with three different forms of the intensity dependence
rough estimates~ — d, (Zweig, 1991. According to Eq. of the partition admittance, support the conjecture.
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The models we employ here, which summarize the merequires that in the region near CF the impedaZggs)
chanics of the organ of Corti using equivalent point imped-must(1) be roughly spiral in form(2) rotate clockwise with
ances and include only one-dimensional treatments of th@hcreasing frequency about a center with a negative real part,
full three-dimensional motion of the cochlear fluids, provideand (3) closely approach the real axis near the natural reso-
highly simplified representations of cochlear mechanics. Byhant frequency of the passive partition. This requirement ap-
simplifying, however, we hope to “eliminate the unneces-pears inconsistent with models in which the OHCs modify
sary so that the necessary may spedkOur intention, in  the tonic stiffness of the cochlear partition, thereby effecting
other words, is not to exhibit models necessarily realistic insubstantial changes in its resonant frequetsien, 1990,
every detail, but rather to identify and explicate basic prin-1997. The requirement also suggests that tonic changes in
ciples of cochlear function in the most transparent manneOHC stiffness, whether mediated by somatic motor proteins
possible. Although obtained here using one-dimensionalHe and Dallos, 1999, 200®@r via the ciliary bundlge.g.,
point-impedance models, our conclusions nevertheless apphltoward and Hudspeth, 198&ave a relatively small effect
in more realistic geometries as well. For example, oneon the total stiffness of the partition, at least for near-best-
dimensional models appear to capture, both qualitatively anffequency stimuli in the basal turns of the cochlea. In this
semiquantitatively, the essential physics that gives rise teespect, our conclusions are consistent with current measure-
traveling-wave dispersion and glidéShera, 2001 In addi-  ments, which suggest that the axial stiffness and the OHC is
tion, the impedances of the cochlear partition obtained asonsiderably smaller than the stiffness of the basilar mem-
solutions to the inverse problem in long-wave, short-waveprane(Russell and Schauz, 1995; He and Dallos, 2999
and three-dimensional models are all in remarkable qualita- Our conclusions thus contradict many, if not most, co-
tive agreemenie.g., Zweig, 1991; de Boer, 1995a, b; de chlear models. Although most cochlear models are not mani-
Boer and Nuttall, 1999 This general agreement among so- festly nonlinear, they usually specify the equivalents of what
lutions to the inverse problem supports Zwei¢l991) con-  we call Zgy(B8) and Zy(B) (i.e., the impedances with and
clusion that to reproduce the data, “it is more important, inwithout contributions from force generation by OHCs
the hierarchy of approximations, to approximat . the im-  Since intensity variations appear to interpolate smoothly be-
pedance of the organ of Corti accurately than to work withtween these two extreméde Boer and Nuttall, 2000 the
the correct number of spatial dimensions.” The success ofjualitative behavior of a model's implicit intensity depen-
our simple model, achieved despite Kolsto2000 claim  dence can often be inferred from the relation between these
that “three-dimensional fluid behavior should be regarded agwo impedances. Our results indicate that to reproduce the
a bare minimum in any quantitative description of cochlearinvariance of the fine time structure of the impulse response,
mechanics,?’ corroborates Zweig's remarks. the resonant frequencies @y(8) and Z,(3) need to be

Physically, our conjecture implies that the local resonannearly identical(i.e., within roughly 10% of one another
frequencies of the cochlear partition are nearly independertfowever, plots of the effect of the cochlear amplifier on the
of intensity. We demonstrate that this intensitgependence BM admittance(Hubbard and Mountain, 199@ndicate that
of resonant frequencies is consistent with the well-knownmany cochlear modele.g., Mountairet al, 1983; Kolston
intensitydependencef the peak frequency of the BM trans- €t al, 1990; Geisler, 1991; Hubbard, 199ail to satisfy this
fer function, which shifts to lower frequencies at higher in- constraint, indicating that such models cannot reproduce the
tensities(producing, at high intensities, the so-called “half- approximate invariance of response timing, as assessed either
octave shift’). We propose that, as with the glidShera, by varying intensity or by disabling the active mechanisms.
2001), the shift in best frequency arises globaligrough the ~ Furthermore, our results rule out what is perhaps the most
intensity dependence of the dominant frequency of the drivbiophysically plausible mechanism so far proposed for the
ing pressurerather than locally through shifts in the local ©rigin of negative damping, namely the fast-time-delayed
resonant frequencies of the partition. Our proposal thus restiffness mode(Neely, 1983; Zweig, 1990 Although cur-
solves the long-standing paradox presented by measuremeri@t cochlear models reproduce, to varying degrees, the form
of mechanical click responses, which exhibit two seeminglyof empirical transfer functions measured in sensitive prepa-
contradictory features: On the other hand, the responsddtions near threshold, the problem they evidently leave un-
manifest the half-octave shift in best frequency with inten-Solved is understanding the biophysical basis of an active
sity: on the other, they exhibit near intensity-invariance offéédback force that is strong enough to reverse the sign of
fine time structure. the partition damping while leaving its resonant frequencies

Near-invariance of fine time structure requires that the"early unchanged.
feedback forces generated by the outer hair cells not signifi-
cantly affect the natural resonant frequencies of the cochlear
partition, which appear to vary by no more than roughly 10%x cxNOWLEDGMENTS
over the full dynamic range of hearing. This requirement
places strong constraints on the biophysical action of the The author gratefully acknowledges many helpful dis-
cochlear amplifier or, more generally, on the mechanisms ofussions with and/or comments from Jont Allen, Egbert de
cochlear dynamic-range compression, as characterized by tiBoer, Paul Fahey, John Guinan, Stephen Neely, William
impedanceZ(B). In particular, we argue that the intensity Peake, Robert Withnell, and George Zweig. This work was
invariance of fine time structure—combined with generalsupported by Grant No. RO1 DC03687 from the NIDCD,
principles, such as stability, local scaling, and causality—National Institutes of Health.
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Yntensity-invariance of fine time structure, an excellent approximation at p=2a[1—(6/2)%] % 2« /3,
low and moderate sound-pressure le@BL9, breaks down in auditory-  The solution for the auxiliary variable is

nerve responses at the highest sound levels. The data of Lin and Guinan B JZei=a)

(2000, for example, show clear evidence for phase reversals and other a=(a, +a +c(l-ag))le,
“anomalies” at click I.eVeIS of 90 dB psP.erak-eqUiValent.SBLand wherec=2+x"2 andx is the solution to the equation
above. Although species and methodological issues complicate the com- 3
parison, click responses measured on the basilar membrane show little evi- X Htan(x)=2m(n/2+ 3),

dence of comparable features, maintaining near-invariance of their zero . . ) .
crossings even at levels exceeding 115 pSElg., Recio and Rhode, obtained numerically. The values{f,p, 1} can then be obtained by direct
2000. substitution. Evaluating the equations using the valye=Im{{, }=0.04

2In this paper, the term “best frequency(BF) is used to locate the maxi- adopted in the text(and taking n=2 for M%l%) yields {8,p,u}

mum of the BM frequency response, which may vary with intensity. The ={—0.1024,0.1175,1.7450 Finally, the proportionality constant in Eq.
“characteristic frequency'(CF) is defined as the best frequency measured (g) for Yg,,(3) was set equal to 1.

in the low-level linear limit. By definition, the CF is therefore independent stpo model parameteN, which determines the approximate number of
30f intensity. _ _ _ wavelengths of the traveling wave on the basilar membrane in response to
For an example illustrating the calculation ¢fl/1,) for a particular form sinusoidal stimulationZweig et al, 1976; Zweig, 199), was given the

of the transduction nonlinearity, see Appendix B of de Boer and Nuttall ygjueN=2.5.

4(2_000- ) . . . The passive admittance thus has the f@fn with a proportionality con-
Given the normalized pole locatiafy, =B, +iay , one can find the cor- stant of 1. In modelM~, the damping constani, was given the value
rgspondmg undampgd resonant frequency and damping constan't pf the os;;p:o_32; in model M=, introduced in Sec. IIlC 1, a slightly higher
cillator from the relationd ,= f ¢ { | and 8,=2a /|, |. Note that fixing damping ©,=0.42) was needed to maintain model stability.
the natural resonant frequency of the oscillator by moving its poles alonglAlthough we write “model M~ using the singular, M~ actually de-
lines of constang,, requires changing both, andf,. Fractional changes notes an entiréamily of models, one for each value ’Qf

5'” fp. however, are generally small. _ . 12Recall that scaling relates properties of the mechanical transfer function to
Movement of the admittance poles along lines perpendicular to the real those of the traveling wave. In particular, mechanical transfer functions
frequency axis yields exact invariance of fine time structure for the dis- T[f/f_(x)] measured as a function bt fixedx also describe the trav-
placement response of the oscillator. For the velocity response, however,gjing gisplacement wave as a functionyodt fixedf. At fixed position, T

the invariance is on_Iy approximate. To see this, note that th(izvelocny re- is the transfer function: at fixed frequency, the traveling wave.

sponse of the oscillator has the foro(r)xcos(2mBx 7+ ¢)e =", Balthough qualitative agreement with the findings of de Boer and Nuttall
where sing)=r/J1+r° with r=a, /B, . The phase shif)—and thus (2000 remains strong, note that in the one-dimensional model used here
the fine time structure of the waveforie.g., the position of its zero  the imaginary part of the partition impedance goes through zero at a value
crossings—therefore depends am, . Note, however, that this dependence  of g (~1.03 closer to the location of the transfer-function peak than
on a is weak(i.e., <27 for the valuesr<1 characteristic of tuned indicated by solutions to the inverse method obtained using two- and
oscillators. three-dimensional modelsle Boer and Nuttall, 2000

®n this paper the scaling variabl@ is defined as the model-independent *“Several of these poles located “above CF” are illustrated in Fig. 3 of
ratio f/f (), wheref-((x) is the characteristic frequency defined by the Chap. VIII of Shera(1992 and in Fig. 5 of Zweig and Sherd995.

peak of the transfer functiofsee Note 2 Note, however, that in the model “"The admittance/gy(7;y) represents the velocity response to a pressure
of cochlear mechanics defined by Ef) (Zweig 1992, 8 refers to the ratio impulse applied locally; it therefore jumps discontinuously to a nonzero
f/f.(x), wheref(x) is the undamped resonant frequency of the oscillator value atr=0 (see, e.g., Note 16 of Shera, 2001

(i.e., the resonant frequency in the limit when the dampihignd stabiliz- 16To see that the principal poles of the modef= admittance are arrayed

ing feedback forcep, are both negligible The parameter values given in  along a curve nearly perpendicular to the real-frequency axis, note that the
Note 8 imply thatf-g(x) and f,(x) are everywhere proportional, with equations in Note 8 yiel@? =1— a2 + 6/2mwu, wherel, =B, +ia, de-

f /fce=1.03. We have maintained the distinction between these two fre- notes the location of the double pole ¥§,,(¢) in the complexs plane.
quencies in all model calculations, but, for clarity of exposition, have ig- Since,uml%, the quantity| 8|/2mu is typically much less than 1. Thus,
nored this small difference in the main text. B, =1 for valuesa, <1. In other words, forr, <1 the double pole lies
"Note that each of the infinite number of poles has a positive imaginary part. ~ * ) o . . ! *

Despite creating a region of negative damping, the model is therefore stableapproxmately along the vertlc_al I'n@’_‘ = 1 ata distancer, from the real

at all frequenciegenergy created at one location is absorbed at another 2XiS- The small but systematic deviations from the vertical predicted by
Equation (145 of Zweig (1991 gives an explicit expression fofgy, in this i_analy5|s are evident in the trajectory shown in Fig).9Recall that
terms of its poles and their residues. the line B, =1, for B=f/f,, corresponds to the lin@, =1.03, for 8

8This note describes the procedure used to determine the parameter vaIUesl‘: f/fCF (see Note B] _ ‘

the model admittance given in E¢9). The admittanceYgy(g) is first This explanation for the half-octa\_/e shlft has been propo_sed_ independently
obtained as a function df(or complexB) by analytic continuation into the by Carney(1999, who noted t‘hat |ntenS|ty—erendent shifts in the tempo-
complex frequency plangRecall from Note 6 that in this context the rgl envel_ope O.f B.M and auditory-nerve Chf:k responses, when complned
normalized frequency is defined as the ratit/,(x).] Three constraining with the intensity-independent frequency glide, can produce changes in the

. ; best frequency of the response.
equations are then used to determine the three model pararfiéiers)}. 8Although it characterizes the mechanical effects of local force generation

We specify(1) the imaginary part of one of the two closely spaced poles of |, ocs; the impedance, should not be regarded as characterizing the
Yem({) and then require tha®) the real and3) the imaginary parts of the “cochlear amplifier.” Cochlear amplification of traveling waves depends

second pole coincide with those of the first. More precisely, giugn on both the active and passive mechanics and their interaction with the

=Im{{,}>0, where(, denotes the double pole &fgy({), one deter- surrounding fluids over a fairly broad region of the cochlea.
mines the three parametefid,p, u}; the real part of the double pol@, 19The suggestion that,(8) be represented as the sum of two components
=Re{{, }; and the auxiliary variabla by solving the system of five simul- with this same qualitative form has been made earlier by Zw&a90,
taneous equations 199)). In an effort to provide a biophysical basis for negative damping,
a,=d2+a; Zweig suggested that(B) be written as the sum of a fast- and a slow-
acting time-delayed stiffness. In that model, the fast-time-delayed stiffness
2mau=1; (delay much smaller than a perjogrovides negative damping and the
slow-time-delayed stiffnesslelay approximately % periods provides the
a/lB,=tar[ 27 (n/2+ %)73* /a]; necessary frequency modulation by stabilizing the resulting oscillator. We
discuss the fast-time-delayed stiffness model, and show that it yields an
Bi=1-(5812)*~a% impedancez®™**"similar to that of model\ =, in Sec. Il C.
and 2For a passive oscillator of the for(i), the zero crossing of the reactance
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(Im{Z(Bo)}=0) occurs at the valug,=|{|, corresponding to the un- He, D. Z. Z., and Dallos, P(2000. “Properties of voltage-dependent so-
damped resonant frequency of the oscillatfy) ( matic stiffness of cochlear outer hair cells,” J. Assoc. Res. Otolaryrigol.

2Reactance changes due to OHCs at other frequencies are not precluded46—813- ] )
Indeed, as shown in Sec. Il B, they are required by stability, local scalingHoward, J., and Hudspeth, A. @1988. “Compliance of the hair bundle

and causality. associated with gating of mechanoelectrical transduction channels in the
22Note that the constraints of causality apply even though the real part of the Pullfrog’s saccular hair cell,” Neuror, 189-199.
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