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Basilar-membrane and auditory-nerve responses to impulsive acoustic stimuli, whether measured
directly in response to clicks or obtained indirectly using cross- or reverse-correlation and/or Fourier
analysis, manifest a striking symmetry: near-invariance with stimulus intensity of the fine time
structure of the response over almost the entire dynamic range of hearing. This paper explores the
origin and implications of this symmetry for cochlear mechanics. Intensity-invariance is
investigated by applying the EQ-NL theorem@de Boer, Aud. Neurosci.3, 377–388~1997!# to define
a family of linear cochlear models in which the strength of the active force generators is controlled
by a real-valued, intensity-dependent parameter,g ~with 0<g<1). The invariance of fine time
structure is conjectured to imply that asg is varied the poles of the admittance of the cochlear
partition remain within relatively narrow bands of the complex plane oriented perpendicular to the
real frequency axis. Physically, the conjecture implies that the local resonant frequencies of the
cochlear partition are nearly independent of intensity. Cochlear-model responses, computed by
extending the model obtained by solution of the inverse problem in squirrel monkey at low sound
levels @Zweig, J. Acoust. Soc. Am.89, 1229–1254~1991!# with three different forms of the
intensity dependence of the partition admittance, support the conjecture. Intensity-invariance of
cochlear resonant frequencies is shown to be consistent with the well-known ‘‘half-octave shift,’’
describing the shift with intensity in the peak~or best! frequency of the basilar-membrane frequency
response. Shifts in best frequency do not arise locally, via changes in the underlying resonant
frequencies of the partition, but globally through the intensity dependence of the driving pressure.
Near-invariance of fine time structure places strong constraints on the mechanical effects of force
generation by outer hair cells. In particular, the symmetry requires that the feedback forces
generated by outer hair cells~OHCs! not significantly affect the natural resonant frequencies of the
cochlear partition. These results contradict many, if not most, cochlear models, in which OHC
forces produce significant changes in the reactance and resonant frequencies of the partition.
© 2001 Acoustical Society of America.@DOI: 10.1121/1.1378349#

PACS numbers: 43.64.Bt, 43.64.Kc, 43.66.Ba@LHC#
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I. INTRODUCTION

Responses of the basilar membrane and auditory n
to acoustic clicks reveal a striking symmetry: near-invarian
with stimulus intensity of the fine time structure of the r
sponse over almost the entire dynamic range of hearing
measurements of basilar-membrane motion the symm
appears as a near-invariance of the zero crossings of the
chanical waveform~e.g., Robleset al., 1976; Ruggeroet al.,
1992; de Boer and Nuttall, 1997; Recioet al., 1998; Recio
and Rhode, 2000!. In the auditory nerve, the invariance
manifest at low and moderate sound levels in the appr
mate level independence of the latency to the peaks of b
standard poststimulus-time~PST! and recovered-probability
compound PST histograms~e.g., Kianget al., 1965; Goblick
and Pfeiffer, 1969; Lin and Guinan, 2000!.1 Intensity-
invariance of fine temporal detail is remarkably robust to
method of measurement: The symmetry appears in~1! direct
measurements of mechanical and neural ‘‘impulse

a!Electronic mail: shera@epl.meei.harvard.edu
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sponses’’ obtained using acoustic clicks;~2! indirect esti-
mates obtained by cross- or reverse-correlation using w
band noise stimuli~e.g., Carney and Yin, 1988; Carne
et al., 1999; de Boer and Nuttall, 1997, 2000!; and~3! ‘‘syn-
thetic’’ time-domain waveforms obtained by applying in
verse Fourier analysis to frequency-domain transfer fu
tions measured with pure tones~e.g., Recio and Rhode
2000!.

Figure 1 illustrates the near intensity-invariance of fi
time structure using recent measurements of bas
membrane~BM! click responses in chinchilla~Recio and
Rhode, 2000!. Although the envelopes of the response wav
forms shift systematically with stimulus intensity over the
dB range represented in the figure, the timings of the pe
valleys, and zero crossings remain almost unchanged.
problem of understanding the origin of this symmetry h
been nicely highlighted by de Boer and Nuttall~2000!. Seek-
ing to identify necessary and sufficient conditions for obta
ing the symmetry, they applied the ‘‘EQ-NL theorem’’~de
Boer, 1997! to study the intensity dependence of basila
membrane motion in the guinea pig. Although they derive
110(1)/332/17/$18.00 © 2001 Acoustical Society of America



n
os
o

gi
ic

lin
c
f

nt
a

st
f
e

lin
he

the
for
nd

ity-
nd
ne
ca-
en-

, is
ng,
ure
ce
ef-

the
ume
ear
t

e

in,

lier

an
ive

d by
ca-
s,
ing

xi-
;
c-

on
sfer
ri-

n

and

lic
e

s

lic
ar

t

ra
ns
cochlear model—based on basilar-membrane impeda
functions obtained from inverse analysis of measured cr
correlation functions—that exhibits the near-invariance
the timing of the mechanical impulse response, the ori
and implications of the symmetry for cochlear mechan
have remained elusive.

This paper takes up the problem, adopting the mode
framework introduced in an earlier study of the frequen
modulations~or ‘‘glides’’ ! evident in impulse responses o
the basilar membrane and auditory nerve~Shera, 2001!.
Glides, which represent a change over time in the insta
neous frequency of oscillation of the response waveform,
nearly independent of stimulus intensity~e.g., de Boer and
Nuttall, 1997; Recioet al., 1998; Carneyet al., 1999; Recio
and Rhode, 2000! and even maintain their general form po
mortem~e.g., Recioet al., 1998!. The intensity-invariance o
glides follows from the invariance of fine time structure w
explore here. In an earlier paper~Shera, 2001!, we demon-
strated basic properties of glides, emphasizing their sca
behavior and their relation to the group delay of t

FIG. 1. Near-invariance of fine time structure in basilar-membrane c
responses. The figure shows normalized BM responses to clicks from R
and Rhode~2000, Fig. 2, chinchilla CB21!. The horizontal axis measure
time after the onset of umbo vibration in periods of the CF~14.5 kHz!.
Displacement waveforms are normalized to unit amplitude with peak c
intensities indicated on the right in dB pSPL. The vertical dotted lines m
selected peaks in the response waveform~P1, P3, P6, and P10!. Although
the waveform envelopes vary systematically with click intensity~e.g., the
envelope maximum shifts in time from about eight periods after the onse
middle-ear vibration at 44 dB pSPL to about two periods at 114 dB!, the
underlying fine time structure remains nearly invariant~e.g., the times of
occurrence of the waveform peaks, valleys, and zero crossings gene
vary by substantially less than a quarter period over the same inte
range!. Adapted from Recio and Rhode~2000!.
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frequency-domain transfer function. Here, we examine
implications for cochlear mechanics—and, in particular,
the mechanisms underlying cochlear amplification a
dynamic-range compression—of the near intens
invariance of the timing of the oscillations of mechanical a
neural impulse responses. It might seem unlikely that o
can learn much about the mechanisms of cochlear amplifi
tion from a phenomenon that appears to be largely indep
dent of that amplification. That independence, however
the key property: Whatever the outer hair cells are doi
they are doing it in a way that leaves the fine time struct
of the impulse response invariant. Requiring this invarian
turns out to place strong constraints on the mechanical
fects of force generation by outer hair cells.

II. INVARIANCE OF BM RESONANT FREQUENCIES

A. Modeling framework

We adopt a simple modeling framework based on
classical point-impedance model of the cochlea. We ass
that at sound intensities in the low-level linear regime n
threshold, the velocityVBM(x, f ) of the basilar membrane a
positionx due to sinusoidal stimulation at frequencyf can be
written as the product of two factors:

VBM~x, f !5YBM~x, f !P~x, f !. ~1!

The first term,YBM(x, f ), represents the admittance of th
cochlear partition, and the second term,P(x, f ), represents
the driving pressure difference across it. In the time doma
Eq. ~1! becomes a convolution:

vBM~x,t !5yBM~x,t !* p~x,t !, ~2!

where lower- and upper-case quantities~e.g.,vBM andVBM)
are related by Fourier transformation. As noted in an ear
paper on glides~Shera, 2001!, the admittanceyBM(x,t) and
driving pressurep(x,t) differ profoundly in character. The
admittance termyBM(x,t) characterizes the response of
isolated section of the cochlear partition to an impuls
force and depends only on thelocal properties of the parti-
tion at positionx. The pressure termp(x,t), by contrast,
represents the driving force appliedin situ and is therefore
global; since stimuli are usually applied in the ear canal~or,
effectively, at the stapes when responses are normalize
stapes motion! and must propagate to the measurement lo
tion, p(x,t) depends not only on the form of the stimulu
but also on the mechanics of the entire cochlea, includ
boundary conditions at the stapes and helicotrema.

We simplify the discussion by assuming the appro
mate local scaling symmetry~Zweig, 1976; Siebert, 1968
Sondhi, 1978! manifest by basilar-membrane transfer fun
tions ~Rhode, 1971; Gummeret al., 1987! and neural tuning
curves~e.g., Kiang and Moxon, 1974; Liberman, 1978!. Lo-
cal scaling symmetry implies that rather than depending
position and frequency independently, mechanical tran
functions and tuning curves in fact depend on the two va
ables f and x primarily in the dimensionless combinatio
b(x, f )[ f / f CF(x), wheref CF(x) is the CF at locationx ~i.e.,
the cochlear position-frequency map!.2 In the time domain,
scaling implies that corresponding basilar-membrane
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neural impulse responses depend ont andx through the di-
mensionless combinationt(x,t)[t f CF(x) representing time
measured in periods of the characteristic frequency. D
supporting this time-domain manifestation of scaling we
presented in the earlier paper on glides~Shera, 2001!. When
rewritten in terms of the scaling variablesb andt, Eqs.~1!
and ~2! become

VBM~b!5YBM~b!P~b!

and ~3!

vBM~t!5yBM~t!* p~t!.

B. Parametrizing the intensity dependence

The model impedanceZBM(b)[1/YBM(b) character-
izes the motion of the cochlear partition at sound levels
the low-level linear regime near threshold. Preparatory
modeling the intensity dependence, we follow others~e.g.,
Neely, 1983; Zweig, 1990; de Boer and Nuttall, 2000! and
write ZBM in the form

ZBM~b!5Zp~b!1Za~b!, ~4!

representing the sum of a ‘‘passive’’ and an ‘‘active’’ com
ponent. The impedanceZa(b) characterizes the local effec
of force generation by outer hair cells~OHCs!; the imped-
anceZp(b) characterizes the mechanics of the partition o
tained when those force generators have been disabled.
‘‘two-component’’ form of the impedance is consistent wi
the experimental findings of de Boer and Nuttall, as reflec
in their solutions to the inverse problem in guinea pig~de
Boer and Nuttall, 2000!. Note that the impedances are a
sumed to scale and are therefore written as functions of
scaling variableb(x, f )5 f / f CF(x).

In the spirit of the EQ-NL theorem~de Boer, 1997! and
its application in guinea pig~de Boer and Nuttall, 2000!, we
then model intensity dependence by defining a family of l
ear models in which the effective strength of the active fo
generators is parametrized by the factorg :

ZBM~b;g!5Zp~b!1gZa~b!, ~5!

where the real parameterg satisfies 0<g<1 and depends on
the amplitude of local basilar-membrane displacement,
thus, indirectly, on stimulus intensity. To indicate this depe
dence we writeg5g(I /I 0), whereI is the intensity andI 0 a
reference that sets the scale. In the low-level linear limit n
threshold (I !I 0), g is approximately 1, independent ofI; at
high intensities (I @I 0), g approaches 0. At intermediate in
tensities,g is presumed to vary monotonically between 1 a
0; its precise value at any given intensity depends on
form of the nonlinearity associated with the active force g
erators~e.g., the form of the saturating displacement–volta
transduction function of the OHC stereocilia!.3

Each value ofg yields a corresponding linear mode
M(g). According to the EQ-NL theorem, the linear mod
M(g) has the same input–output cross-correlation funct
as a nonlinear model in which~a! the low-level linear limit is
described byM(1) @i.e., by Eq.~5! with g51# and ~b! the
effect of increasing stimulus intensity is partially to satura
the active force generators~e.g., the OHCs!, reducing their
334 J. Acoust. Soc. Am., Vol. 110, No. 1, July 2001
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effective strength by the factorg. The modelM(0) thus
describes the high-level linear limit~or postmortem condi-
tion! in which the active force generators have been entir
disabled. Application of the EQ-NL theorem to cochlear r
sponses requires that the input–output cross-correla
functions be measured with flat-spectrum wideband noise~so
that the same value ofg characterizes OHC saturatio
throughout the cochlea! and subsequently normalized b
stapes velocity. The OHC transduction nonlinearity is
sumed to be memoryless and instantaneous. For a full
cussion, see de Boer~1997!.

By applying the EQ-NL theorem, we have replaced t
analysis of a single nonlinear model~difficult! with the
analysis of a large number of linear models, one for ea
noise intensity~easier!. Although the net result is a substan
tial simplification of the analysis, the substitution is val
only for quantities, such as cross-correlation functions, m
sured with wideband noise stimuli~de Boer, 1997!. Note,
however, that the phenomena we explore here—
intensity-invariance of fine time structure in mechanical a
neural impulse responses—is robust to the measurem
technique and is seen in derived impulse responses meas
with noise stimuli ~e.g., de Boer and Nuttall, 1997, 2000
Carneyet al., 1999!.

C. Admittance poles of a simple oscillator

To probe the origin of the near-invariance of fine tim
structure in cochlear responses, we first consider a sim
example: the impulse response of an harmonic oscillator
its relation to the poles of the admittance in the comp
plane. The admittance,Yp , of a simple harmonic oscillator—
such as the passive resonator later assumed to charac
the cochlear partition at high sound intensities—has the fo

Yp~ f !}
i f f p

f p
22 f 21 idp f f p

, ~6!

wheref p is the resonant frequency in the limit of zero dam
ing anddp is the dimensionless damping constant. Introdu
ing the normalized frequencyb5 f / f CF for future conve-
nience, we now rewrite Eq.~6! to expressYp in terms of the
locations of its poles. Equation~6! becomes

Yp~z!}
i zn

~z2z3!~z2z3* !
, ~7!

where the normalized pole locations are denotedz3 and
2z3* , and the variablez represents the complex extension
the real variableb, defined so thatz equalsb along the real
axis ~b5Re$z%!. The superscripted asterisk~* ! denotes com-
plex conjugation. The positive-frequency pole, at locati
z3 , has real and imaginary partsz3[b31 ia3 , where the
constants a35ndp/2 and b35nA12(dp/2)2, with n
[ f p / f CF5uz3u.

Since the impulse response of the oscillator has the fo
sin(2pb3t)e22pa3t, wheret[t f CF is normalized time, we
see that the real part of the pole location (b3) corresponds to
the normalized natural frequency of oscillation and t
imaginary part (a3) to the decay constant of the envelop
Christopher A. Shera: Intensity-invariance of fine time structure
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This correspondence implies that by varyinga3 while hold-
ing b3 fixed one generates a family of oscillators4 whose
impulse responses differ in their envelopes but maint
identical underlying frequencies of oscillation. In oth
words, moving the poles along lines perpendicular to the
frequency axis changes the envelope of the impulse resp
while preserving the fine time structure of the waveform.5

D. Conjecture

Analysis of the harmonic oscillator indicates th
intensity-invariance of the impulse response timing cor
sponds to movement of the admittance poles along li
nearly perpendicular to the real frequency axis. Applyi
these ideas to the motion of the basilar membrane, we re
from Eq.~3! that the velocity impulse response,vBM(t;g), is
the convolution ofp(t;g) and yBM(t;g). SinceyBM(t;g)
depends on the analytic structure of the mechanical ad
tance,YBM(b;g), in the complex plane, our results from th
oscillator example would carry over immediately if the dri
ing force producing the motionvBM(t;g) were a single im-
pulse applied locally, as it is for the oscillator. In the cochle
however, the driving force consists of the traveling press
wave, p(t;g), whose dispersive character introduces ad
tional time and frequency dependence~e.g., Shera, 2001!.
We note, however, that the traveling pressure wave is
independent of the mechanics of the partition; indeed,
pressurep(t;g) depends intimately on the spatial variatio
of the admittance, and the intensity dependence ofp(t;g) is
ultimately determined by that ofYBM(b;g). We therefore
conjecture that our conclusions from the oscillator apply a
to cochlear mechanics. In particular, we suggest that
near-invariance of fine time structure in BM impulse r
sponses implies that the poles of the effective BM adm
tance remain within relatively narrow bands of the comp
plane oriented perpendicular to the real frequency axis as
parameterg ~i.e., stimulus intensity! is varied. If our conjec-
ture is correct, the natural resonant frequencies of the
chlear partition, defined by the real part of the admittan
pole locations, must be nearly independent of intensity.

III. TESTING THE CONJECTURE

We now explore this conjecture using a simple mode
cochlear mechanics. The model defined by Eq.~5! requires
specification of two impedances. For later convenience—
because it corresponds with the procedure for estima
these impedances experimentally~e.g., Zweig, 1990; de Boe
and Nuttall, 2000!—we take the two impedances to be tho
obtained~1! in the low-level linear limit @i.e., ZBM(b;1)]
and ~2! with the active mechanisms disabled@i.e.,
ZBM(b;0)]. Note that we can writeZp(b)5ZBM(b;0) and
Za(b)5ZBM(b;1)2Zp(b). Thus,

ZBM~b;g!5Zp~b!1g@ZBM~b!2Zp~b!#, ~8!

where we defineZBM(b)[ZBM(b;1) as a notational short
hand. In the following sections we discuss our model for
for the low- and high-level impedancesZBM(b) and Zp(b)
appearing in Eq.~8!.
J. Acoust. Soc. Am., Vol. 110, No. 1, July 2001 C
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A. The impedance of the cochlear partition, ZBM„b…

To characterize the response of the cochlear partition
the low-level linear regime~g51!, we adopt a variant of the
model impedance obtained by solution of the inverse pr
lem in the squirrel monkey~Zweig, 1991!. We use this
model both for its convenient analytic form and because
constitutes perhaps the simplest system that displays man
the qualitative features of the real cochlea. In the model,
BM impedance scales and has the form of an harmonic
cillator, with a netnegativedamping, stabilized by a feed
back force proportional to the oscillator displacement at
earlier time. The model admittance has the form~Zweig,
1991!6

YBM~b!}
ib

12b21 idb1re22p imb
, ~9!

where the dimensionless parameterd represents the ne
damping ~with d,0!; and the dimensionless parametersr
and m characterize, respectively, the strength and the t
delay~in periods of the local resonant frequency! of the sta-
bilizing feedback force.

The parameter values found by Zweig~1991! imply that
the admittanceYBM(b) has, among an infinite series of pole
in the complexb ~or z! plane, two closely spaced poles ju
above the real frequency axis nearb51.7 By making both
the impedance magnitude and its derivative small at frequ
cies near CF, the two closely spaced poles inYBM(b) help
create the tall, broad peak of the transfer function~Zweig,
1990!. The model variant used here has the same functio
form as the original, but differs somewhat in its parame
values. By using slightly different parameter values, we c
make the two closely spaced poles coincident without s
nificant effect on the corresponding transfer function~Shera,
1992; Zweig and Shera, 1995!. For ease of analysis, we us
this simpler ‘‘double-pole’’ form of the admittance. Th
model parameter values are thus determined by specif
that the two poles principally responsible for the peak in
admittance nearb51 coincide at a given distance from th
real frequency axis.8 The parameter that sets this distan
and the additional parameter,N, representing the approxi
mate number of wavelengths of the traveling wave on
basilar membrane~Zweig et al., 1976; Zweig, 1991!9 were
chosen in order to produce a BM velocity impulse respo
that peaks after about ten periods of the characteristic
quency~in rough agreement with data at low sound–press
levels from guinea pig and chinchilla!.

B. The passive impedance, Zp„b…

We take the impedance that characterizes the pas
(g50) system,Zp(b), to be a simple harmonic oscillato
with positive damping.10 This form is consistent with recen
attempts to fit experimental data obtained from the ba
turns of the cochlea in passive preparations~e.g., Mammano
and Nobili, 1993; Brass, 2000!. Initially, we take the reso-
nant frequency characterizing the passive system (f p) to
have a value approximately equal to the local CF@i.e., n
5 f p(x)/ f CF(x)'1]. We explore the implications of this
choice of resonant frequency in Sec. III D. To reflect t
335hristopher A. Shera: Intensity-invariance of fine time structure
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approximate equality off p and f CF, we denote the mode
M'.11 With functional forms now specified for bothZp and
ZBM , the ‘‘active impedance,’’Za, can be obtained by sub
traction. Equation~8! allows us then to computeZBM(b;g)
as a function ofg by interpolating between these extreme

C. Results for model MÉ

1. Transfer functions and impedances

Figure 2 shows the impedancesZBM(b;g) and corre-
sponding BM transfer functionsT(b;g) for values of g
spanning the full range@0,1#. The model transfer function
and impedances—both their form and their variation w
intensity—bear a strong qualitative resemblance to th
measured experimentally or obtained using the inve
method ~cf. Figs. 2–4 of de Boer and Nuttall, 2000!. For
example, at the lowest effective intensity~g51!, the real part
of ZBM(b;g) is negative over an extended region ofb just
basal to the response peak atb51. ~In this description, we
have used scaling to regard the figure as illustrating mo
impedances and transfer functions versus cochlear locatio
fixed frequency.12! The traveling wave is amplified as
propagates through the region of negative damping.
smaller values of g ~i.e., at higher intensities!,
Re$ZBM(b;g)% increases towards 0, the region of amplific
tion narrows, and the total gain decreases~as measured, fo
example, by the height of the transfer-function peak!. As
intensity increases further, the region of power amplificat
rapidly shrinks to zero and disappears~in this case, at
g'0.55!. Although the real part of the impedance then b

FIG. 2. Intensity dependence of BM impedances and velocity transfer f
tions for modelM'. The left-hand panel shows the real~top! and imagi-
nary parts~bottom! of the BM impedanceZBM(b;g) for eleven values ofg
spanning the range 0–1 in steps of 0.1. Units are defined so that the pr
tionality constant in Eq.~9! for YBM(b) equals unity. The right-hand pane
shows the amplitudes~top! and phases~bottom! of corresponding BM trans-
fer functions,T(b;g). The dimensionless frequency variableb[ f / f CF(x)
increases along the abscissa. The vertical dotted lines locate the peak
transfer function in the low-level linear limit (g51).
336 J. Acoust. Soc. Am., Vol. 110, No. 1, July 2001
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comes everywhere positive, the influence of the active fo
generators in shaping the impedance remains evident at
the highest intensities. These changes in Re$ZBM(b;g)% are
accompanied by corresponding, although less drama
changes in the reactive component of the impedance. A
intensities the reactive component remains negative, res
bling a stiffness, throughout the region of the transf
function peak (b,1.03).13 Note that the changes in
Im$ZBM(b;g)%, as with those in Re$ZBM(b;g)%, depend
strongly on location and frequency. Near the peak the
chlear amplifier acts to reduce the effective stiffness, and
reduction diminishes at higher intensities; thus, change
Im$ZBM(b;g)% are such that the effective stiffness, like th
effective damping, increases with intensity.

2. Admittance pole trajectories

Figure 3 shows the locations of the principal, positiv
frequency poles of the model-M' BM admittance,
YBM(z;g), as a function ofg. @By principal poles we mean
those whose projection onto the real frequency axis falls n
or below CF ~i.e., ub3u&1, whereb35Re$z3%). The re-
maining poles, located substantially above CF,14 are less im-
portant in shaping the peak of the transfer function.# The
lines trace out the trajectories of the principal poles asg is
decreased from 1 towards 0. Forg51 ~i.e., in the low-level
linear limit!, two poles coincide close to the real axis ne
Re$z%51.03. Coincident poles are shown with an asterisk~* !.
A third pole near Re$z%50.3 contributes to shaping th
‘‘tail’’ of the transfer function. In addition to these thre
principal poles ~and their counterparts in the negativ
frequency half plane!, YBM(z;g) has an infinite string of
poles at higher values of Re$z% ~Zweig, 1991!. Note that the
two coincident poles occur slightly above CF at a valueb*
5Re$z* %'1.03 greater than 1. This value ofb locates the
normalized natural ‘‘resonant frequency’’ of an isolated se
tion of the cochlear partition and corresponds closely to
point in Fig. 2 where the imaginary part ofZBM(b;g)
crosses the zero line.

c-

or-

the

FIG. 3. Admittance pole trajectories for modelM'. The figure shows
trajectories in thez plane of the principal positive-frequency poles o
YBM(z;g) for modelM'(g) as a function ofg. At g51, YBM(z;g) has a
double pole~* ! at z* '1.031 i0.04. Asg decreases the two poles separa
slightly and move out along the solid lines in the directions shown by
arrows. Markers~3! measure off equal intervals ofg spanning the range
0–1 in steps of 0.1. A third pole near Re$z%50.3 contributes to shaping the
‘‘tail’’ of the transfer function. In the limitg→0, all but one of the poles
move off towards infinity, and the admittanceYBM(z;g) becomes a passive
harmonic oscillator,Yp(z), characterized by a single pole atz'1.03
1 i0.17.
Christopher A. Shera: Intensity-invariance of fine time structure
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FIG. 4. Impulse responses and their instantaneo
frequency trajectories for several values ofg in model
M'. The figure shows impulse responses~left! and
corresponding instantaneous-frequency~IF! trajectories
~right! for model pressure, admittance, and velocity r
sponses~top to bottom, respectively!. Responses are
shown as a function of the dimensionless time variab
t[t f CF(x) for g5$1,0.95,0.7,0%, with darker lines in-
dicating larger values ofg ~i.e., lower intensities!. IF
trajectories were computed as described elsewh
~Shera, 2001!. The sharp notches apparent in the
trajectory foryBM(t;g) ~e.g., neart'14 for g50.95 or
t'6 for g50.7! reflect transient phase reversals in th
corresponding impulse response that result from beat
between contributions from the two poles in the adm
tance nearf ' f CF ~cf. Fig. 3!. Note how the fine time
structure for all three responses~i.e., pressure, admit-
tance, and velocity! remains approximately independen
of g ~i.e., of intensity!. Indeed, the corresponding IF
trajectories can be difficult to distinguish in the plo
their asymptotic values generally differ by less than 5
over the entire range ofg.
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How do the poles move with intensity? Asg decreases
from 1, the double pole splits apart, and the poles move
along the solid lines in the directions shown by the arrow
The symbols~3! mark off equal intervals ofg along each
trajectory. Asg approaches 0, all but one of the poles~and
its counterpart in the negative-frequency half-plane! move
off towards infinity. In the limitg→0, the mechanical admit
tanceYBM(z;g) takes the form of a passive harmonic osc
lator (Yp) characterized by a single pole nearz51.03
10.17i . Recall from Sec. III B that the parameters of t
oscillator Yp(b) characterizing the passive system at hi
sound levels~g50! were chosen so that its single pole wou
lie almost directly above the double pole characterizing
combined~i.e., ‘‘active1passive’’! system at low levels~g
51!. In other words, the natural ‘‘resonant frequencies’’
the two systems, given by the real parts of the pole locatio
are nearly identical. As a consequence of the approxim
alignment of pole locations at the two extremes~g51 and
g50!—and the corresponding invariance of natural reson
frequencies—the poles at intermediate values ofg also re-
main fairly close to the line Re$z%51.03. Although the poles
separate slightly, they do so almost symmetrically about
line Re$z%51.03, so that their mean frequency stays nea
constant.

3. Impulse responses

If our conjecture is correct, we expect the fine tim
structure of the model impulse responses to be appr
mately independent of intensity~since the poles of the ad
mittance are confined to a relatively narrow strip of the co
plex plane!. Figure 4 demonstrates that modelM' does
indeed capture this symmetry of the data. The figure sh
model pressure, admittance,15 and velocity impulse re-
sponses, along with corresponding instantaneous-frequ
~IF! trajectories, computed at several values ofg. As dis-
cussed above, the responses at differentg can be interpreted
as derived impulse responses~input–output cross-correlatio
functions! obtained from a single nonlinear model at diffe
ent intensities~and subsequently normalized by the input
J. Acoust. Soc. Am., Vol. 110, No. 1, July 2001 C
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the stapes!. As g decreases~i.e., as intensity increases!, the
response envelopes shrink in size~the nonlinearity is com-
pressive! and peak at progressively earlier times. Note, ho
ever, that despite these changes in the envelope of the
sponse, the fine time structure remains almost independe
g. For example, the asymptotic values of the IF trajector
differ by less than 5% over the entire range ofg. Frequency-
domain analogues of these intensity effects—namely
strong reduction in peak amplitude accompanied by re
tively small but systematic changes in phase below CF~e.g.,
Rhode and Recio, 2000!—can be seen in the model BM
velocity transfer functionsT(b;g) shown in Fig. 2.

D. Other models of intensity dependence

In modelM' described above the approximate inva
ance with intensity of the fine time structure of the impul
response is a direct consequence of the roughly vert
alignment of admittance-pole locations about the li
Re$z%51.03. We illustrate this point by considering tw
other heuristic models of the intensity dependence of the
admittance.

1. Model MË

In model M,, the resonant frequency of the passi
admittanceYp(b) obtained in the limitg→0 is taken to be
roughly one-half octave below CF@i.e., n5 f p(x)/ f CF(x)
'A2/2]. As a consequence of this half-octave downwa
shift in resonant frequency, the admittance-pole trajecto
are no longer confined to the vicinity of the line Re$z%51.03.
As illustrated in Fig. 5~b!, the pole closest to the real ax
moves off to lower frequencies asg decreases; atg50, the
pole converges on the passive pole atz'0.7710.17i . Figure
6~a! shows that this variation in resonant frequency destr
the near-invariance of fine time structure~cf. modelM' in
Fig. 4!. As expected, the asymptotic frequencies of cor
sponding IF trajectories~not shown! vary systematically with
g, decreasing by roughly half an octave asg approaches 0. In
337hristopher A. Shera: Intensity-invariance of fine time structure
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the frequency domain, the model BM transfer functions@see
Fig. 7~b!# manifest unrealistically large shifts in peak fr
quency as well as considerable changes in phase below

2. Model MÄ

Our analysis predicts exact invariance of fine time str
ture when the poles of the admittance move along vert
lines. The pole trajectories of modelM5, illustrated in Fig.
5~c!, approximate this ideal, limiting case. To achieve ne
perfect alignment of the pole positions in modelM5, we
began, as before, with the double-pole form of the BM a
mittance described in Sec. III A. But rather than simulati
intensity dependence by varyingg in the two-component

FIG. 5. Admittance-pole trajectories in the complex plane. The three pa
@~a!, ~b!, and~c!# show trajectories in thez plane of the principal positive-
frequency poles of the BM admittance for three different model for
(M', M,, andM5) of the intensity dependence. Panel~a!, reproduced
from Fig. 3, shows the pole trajectories for modelM' as a function ofg. At
g51, YBM(z;g) has a double pole~* ! at z* 51.031 i0.04. Asg decreases
the two poles separate slightly and move out along the solid lines in
directions shown by the arrows. Markers~3! measure off ten equal interval
of g spanning the range 0–1. In the limitg→0, all but one of the poles move
off towards infinity, and the admittanceYBM(z;g) becomes a passive har
monic oscillator,Yp(z). Panel~b! shows the pole trajectories for modelM,

as a function ofg. As in panel~a!, markers~3! measure off ten equa
intervals of g spanning the range 0–1. In modelM,, the resonant fre-
quency of the passive admittanceYp(b) obtained in the limitg→0 is
roughly one-half octave below CF. For comparison, the gray lines show
trajectories from modelM'. Panel~c! shows the pole trajectories for mode
M5 as a function ofa* , the imaginary part of the double pole of th
admittance. Markers~3! measure off ten equal intervals ofa* spanning the
range 0.04–0.25. In modelM5, the double poles of the admittanc
YBM(z;a* ) move along a curve nearly perpendicular to the real freque
axis. Note that all three models are identical in the low-level linear lim
~i.e., for g51 in modelsM' andM, and fora* 50.04 in modelM5).
338 J. Acoust. Soc. Am., Vol. 110, No. 1, July 2001
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form of the impedance, as we did in modelsM' andM,,
we varied the imaginary part of the double pole directly~see
Note 8!. By varying the imaginary part of the double po
~denoteda* [Im$z* %, where the subscripted asterisk sym
bolizes a double pole!, we constrain the principal poles of th
model admittance,YBM(z;a* ), to move along a nearly ver
tical line in the complex plane~i.e., along a lineb*
'constant).16 As a consequence of this difference in mod
structure, the modelM5 impedances,ZBM(b;a* ), are only
approximately of the two-component form given by Eq.~5!.
Figure 6~b! shows that near-vertical alignment of admittan
pole locations yields near-perfect invariance of fine tim
structure. The corresponding frequency-domain trans
functions @see Fig. 7~c!# are, on this scale, almost indistin
guishable from those of modelM'.

E. Recapitulation

Figure 8 summarizes the intensity dependence of
fine time structure in each of the three models~see also Table
I!. ModelsM' andM5 manifest the near-invariance of fin
time structure seen in measured responses, and in these
els the poles of the BM admittance move along trajector
roughly perpendicular to the real frequency axis. We sugg
that this result applies to the real cochlea: The approxim
invariance of the fine time structure of the impulse respo
implies that the poles of the effective BM admittance rem
within relatively narrow bands of the complex plane orient
perpendicular to the real frequency axis as the stimulus
tensity is varied. We expect our conjecture to apply so lo
as the driving pressure forcep(t;g) inherits its intensity
dependence through the admittance, as it does in sim
models. Physically, our conjecture implies that the natu
resonant frequencies of the cochlear partition are nearly
dependent of intensity. Put yet another way, the feedb
forces generated by the outer hair cells~or, more generally,
by the ‘‘cochlear amplifier’’! do not significantly change the
natural resonant frequencies of the cochlear partition.

IV. CONSISTENCY WITH THE ‘‘HALF-OCTAVE SHIFT’’

Is our conjecture that the resonant frequencies of
cochlear partition are nearly independent of intensity con
dicted by the well-known intensity dependence of the pe
~or best! frequency of the BM transfer function, which shift
to lower frequencies at higher intensities? Reference to
responses of modelsM' and M5 in Fig. 7 demonstrates
that the answer is ‘‘No.’’ Note, for example, that althoug
the poles of the model-M5 admittance move nearly
vertically—and the resonant frequencies are therefore es
tially independent of intensity—the best frequency~BF! of
the transfer function shifts systematically with level from
peak atf / f CF51 ~for a* 50.04) to a peak roughly one-ha
octave lower~at a* 50.25). ModelsM' andM5 therefore
reproduce the ‘‘half-octave shift’’ in best frequency witho
any corresponding change in the underlying resonant
quencies of the system.

If the half-octave shift does not reflect a change in t
local resonant frequency of the cochlear partition~e.g., due
to a change in stiffness!, what then is the mechanism tha
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FIG. 6. Impulse responses for two different model forms (M, andM5) of the intensity dependence of the effective BM admittance. Panel~a! shows model
M, impulse responses for several values ofg. As in Fig. 4, the figure shows impulse responses for model pressure, admittance, and velocity respon~top
to bottom, respectively!. Responses are computed forg5$1,0.95,0.7,0% and are normalized by input at the stapes so that response amplitudes decre
smaller values ofg ~i.e., at higher intensities!. In modelM,, the resonant frequency of the passive admittanceYp(b) obtained in the limitg→0 is roughly
one-half octave below CF. Note how the fine time structure of the response varies strongly withg ~i.e., with intensity!. Panel~b! shows modelM5 impulse
responses for several values ofa* . Responses are computed fora* 5$0.04,0.05,0.1,0.25% and normalized by input at the stapes so that response amplit
decrease at larger values ofa* ~i.e., at higher intensities!. In model M5, the double poles of the admittanceYBM(z;a* ) move along a curve nearly
perpendicular to the real frequency axis. As a result, the fine time structure is essentially independent of intensity.

FIG. 7. Intensity dependence of model BM velocity transfer functions. The three panels@~a!, ~b!, and~c!# show the amplitude~top! and phase~bottom! of the
BM velocity transfer function~BM/stapes! for three different model forms (M', M,, andM5) of the intensity dependence of the BM admittance. Pa
~a! shows transfer functions for modelM', defined by the admittance-pole trajectories in Fig. 5~a!. Reproduced from Fig. 2, the model-M' transfer functions
are shown for values ofg corresponding to the markers~3! in Fig. 5~a! ~i.e., for eleven values spanning the range 0–1 in steps of 0.1!. In modelM', the
resonant frequency of the passive admittanceYp(b) is equal to CF. Panel~b! shows transfer functions for modelM, at the values ofg given by the markers
on the admittance-pole trajectories of Fig. 5~b!. In modelM,, the resonant frequency of the passive admittanceYp is roughly one-half octave below CF
Panel~c! shows transfer functions for modelM5 at the values ofa* given by the markers on the admittance-pole trajectories of Fig. 5~c!. In modelM5,
the double poles of the admittanceYBM(z;a* ) move along a curve nearly perpendicular to the real frequency axis. Note that all three models are iden
the low-level linear limit.
339J. Acoust. Soc. Am., Vol. 110, No. 1, July 2001 Christopher A. Shera: Intensity-invariance of fine time structure
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creates the shift in best frequency? The answer—as with
origin of the glide~Shera, 2001!—is to be found not in the
admittance, but in the driving pressure; not locally at t
point of measurement, but globally in the spatial variation
geometry and mechanics that underlies the cochlear map
see this, consider modelM' and recall that the BM velocity
impulse response,vBM(t;g), is the convolution ofp(t;g)
andyBM(t;g) @Eq. ~3!#. Although the best frequency of th
admittance spectrum is nearly independent of intensity,
same is not true of the pressure. As intensity increases
amplification of the traveling pressure wave is reduced. A
consequence, the pressure impulse responsep(t;g) decays
from its maximum amplitude more quickly and its ‘‘center
energy’’ moves to earlier times~see Fig. 4!. Because of
traveling-wave dispersion~Shera, 2001!, however,p(t;g) at
early times is dominated by the glide, which, in the base

FIG. 8. Variation of fine time structure in impulse responses for three
ferent model forms (M', M,, andM5) of the intensity dependence o
the effective BM admittance. In the top panel, the nearly vertical lin
represent trajectories, traced out as the parameterg is varied over the inter-
val @0,1#, marking the times of occurrence of corresponding peaks in
model-M' BM velocity impulse response. So that intensity increases fr
top to bottom along the axis, the surrogate value 12g is shown along the
ordinate. Time is plotted along the abscissa in units of periods of CF. N
malized response waveforms, corresponding tog50 andg51, respectively,
appear at the top and bottom of each panel. At each surrogate inte
trajectories are plotted over a total time interval equal to three times
energy-weighted average group delay of the response~truncated to the near-
est whole period!. The middle panel shows trajectories for modelM, in the
same format as the top panel. The bottom panel shows trajectories for m
M5. The ordinate shows values ofa* in the range@0.04,0.25# remapped
linearly onto the interval @0,1#, using the equation â* 5@a*
2min(a* )#/@max(a* )2min(a* )#, for consistency in the display. The
three vertical dotted lines spanning the figure mark selected peaks in
model-M5 waveform.
340 J. Acoust. Soc. Am., Vol. 110, No. 1, July 2001
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the cochlea, consists primarily of frequencies below C
Thus, as the duration of the driving pressurep(t;g) shortens
with increasing intensity, the period of the glide becomes
ever-increasing fraction of the total duration of the respon
As a result, the motion of the membrane at the measurem
location becomes more and more dominated by driving
quencies lower than CF. The peak of the velocity spectr
~i.e., the best frequency! therefore shifts to lower
frequencies.17 Thus, as with the glide~Shera, 2001!, the shift
in BF arises not through thelocal properties of the cochlea
partition—the resonant frequencies ofYBM change neither
with time nor with intensity—but through theglobal proper-
ties of the driving pressure.

A. Complementary shifts in best frequency and
bandwidth

In addition to the half-octave shift, modelsM' and
M5 capture another important characteristic of the intens
dependence of BM transfer functions. As illustrated in F
7, the best frequency changes relatively little over the first
dB reduction in peak amplitude; the bulk of the frequen
shift occurs at the highest intensities over a relatively sm

TABLE I. Summary of the three different model forms of the intens
dependence of the effective BM admittance discussed in this paper.

Summary of models
Model Description Formula Invariance?

M' Resonant frequency ofYp

approximately equal to CF
f p(x)' f CF(x) Very good

M, Resonant frequency ofYp

approximately one-half
octave below CF

f p(x)' f CF(x)/A2 Poor

M5 Poles of the BM admittance
move along lines nearly
perpendicular to the
real frequency axis

b* 'constant Excellent

-
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e
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ity,
e
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FIG. 9. Intensity dependence of transfer-function bandwidth and best
quency in modelM'. The figure plots theQ10 vs the normalized best
frequency~BF/CF! of the model transfer-functionT(b;g) with g as param-
eter.Q10 is defined as the ratio BF/D f 10 , whereD f 10 is the transfer-function
bandwidth 10 dB below the peak. The dots mark the eleven valuesg
corresponding to the markers on the admittance-pole trajectories in Fi
they span the range 0–1 in steps of 0.1. The dotted line marks the v
BF/CF51 obtained in the low-level linear limit near threshold. Note th
changes in BF andQ10 occur over complementary intensity ranges: Most
the change in BF occurs for 0&g&0.5; most of the change inQ10 for
0.5&g&1.
Christopher A. Shera: Intensity-invariance of fine time structure
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part of the total dynamic range. The curve shown in Fig
quantifies this nonuniform shift in BF for modelM'. Figure
9 also illustrates how changes in the best frequency
bandwidth of the response occur over complementary p
of the intensity range, in agreement with experimental d
~e.g., Møller, 1977!. Note, in addition, that the slope of th
curve indicates that the bandwidth of the transfer function
a strong function ofg at values ofg close to 1. Even smal
reductions in the effective strength of the cochlear ampli
~e.g., due to surgical trauma! can therefore produce relativel
large changes in the bandwidth~and group delay! of the re-
sponse to threshold-level sounds.

The nonuniform shift in best frequency with intensi
can be understood from the conceptual model used to exp
the half-octave shift. The model suggests that shifts in the
of vBM(t;g) remain relatively small so long as the impul
responsesp(t;g) andyBM(t;g) last longer than the duratio
of the pressure glide. Figure 10 compares these duration
a function ofg for modelM'. Although quantitative details
depend on precisely how one defines the duration of
response, model results are qualitatively consistent with
conceptual analysis. At valuesg*0.5, both p(t;g) and
yBM(t;g) last longer than the duration of the glide, and t
BF therefore changes relatively little with intensity~cf. Fig.
9!. At valuesg&0.5, however, the durations of bothp(t;g)
andyBM(t;g) become comparable to or less than the len
of the glide, and intensity-related shifts in BF become larg

V. CONSTRAINTS ON THE MECHANISMS OF
COCHLEAR AMPLIFICATION

In Sec. III B we represented the total basilar-membra
impedanceZBM(b;g) in the form

ZBM~b;g!5Zp~b!1gZa~b!, ~10!

FIG. 10. Impulse-response durations in modelM'. The figure shows the
durations of the impulse responsesp(t;g) ~solid line!, yBM(t;g) ~dashed
line!, andvBM(t;g) ~dotted line! as a function ofg. Response duration is
defined here as the time~in periods of the CF! at which the envelope of the
response decays to 10% of its peak value. As expected from the convol
in Eq. ~2!, the duration ofvBM(t;g) is approximately equal to the sum o
the durations ofp(t;g) andyBM(t;g). The gray line shows the duration o
the glide in the pressurep(t,g), defined as the time at which the instant
neous frequency reaches 90% of CF. Its value is independent ofg. Note that
the durations ofp(t;g) andyBM(t;g) become comparable to the duratio
of the pressure glide atg'0.5, corresponding roughly with the value ofg at
the bend in the curve of Fig. 9.
J. Acoust. Soc. Am., Vol. 110, No. 1, July 2001 C
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representing the sum of a passive and an active compo
(Zp andZa, respectively!, where the coefficient ofZa varies
with intensity. For purposes of explication we have regard
the two modelsM' andM,—which are, by construction
identical in the low-level linear limit~g51!—as differing in
the form of the underlying passive impedances,Zp . In par-
ticular, the passive impedances in these two models w
taken to differ in the locations of their resonant frequenc
relative to CF. To explore the implications of our results f
cochlear biophysics, we now take a complementary view
ask: What constraint does the intensity-invariance of B
resonant frequencies place on the mechanical effects of f
generation by outer hair cells, as characterized by the ac
impedanceZa?

18

A. Two-component form of Za„b…

We begin by examining the form ofZa(b) in models
M' andM,. For impedances of the two-component for
~10!, the active impedanceZa(b) can be obtained by simple
subtraction of the impedancesZBM(b) andZp(b) character-
izing the low- and high-level linear limits, respectively
Za(b)5ZBM(b)2Zp(b). Figure 11 shows a polar plot of th
impedanceZa(b) for the modelsM' and M,. For refer-
ence, Fig. 12 shows corresponding values ofZBM(b;g) and
their variations withg. The solid curves in Fig. 11 trace ou
the real and imaginary parts of the model impedancesZa(b)
asb varies over the interval@0.5,1.1# containing the peak of
the transfer function. We focus on this region because o
side the peak region the BM impedance obtained by solu
of the inverse problem is less reliable~and its precise form
less important in determining the shape of the transfer fu
tion!.

In both models,Za(b) resembles a spiral arc, offse

on

FIG. 11. Polar plot of the impedanceZa(b) for modelsM' andM,. The
two black curves trace out the real~resistive! and imaginary~reactive! parts
of Za(b) as b varies over the interval@0.5,1.1# containing the peak of the
transfer function. Dots on the two curves indicate equal intervals~0.05! of b.
The gray lines show how the effective impedancegZa(b) changes asg
decreases to 0 in steps of 0.1. Dotted lines mark the positions of the rea
imaginary axes.
341hristopher A. Shera: Intensity-invariance of fine time structure
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FIG. 12. Intensity dependence o
model BM impedance functions. The
three panels@~a!, ~b!, and~c!# show the
real ~top! and imaginary parts~bot-
tom! of ZBM(b;g) for the three differ-
ent model forms (M', M,, and
M5) of its intensity dependence de
fined by the admittance-pole trajecto
ries in Fig. 5. Panel~a! shows imped-
ances for modelM', reproduced
from Fig. 2, at values ofg correspond-
ing to the markers~3! in Fig. 5~a!.
Panel~b! shows impedances for mode
M, at the values ofg corresponding
to the markers in Fig. 5~b!. Panel~c!
shows impedances for modelM5 at
the values ofa* corresponding to the
markers in Fig. 5~c!. Units are defined
so that the proportionality constant in
Eq. ~9! for YBM(b) equals unity. The
impedances of all three models ar
identical in the low-level linear limit.
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from the origin and traced out clockwise at nearly const
‘‘angular velocity’’ asb increases uniformly. Asg decreases
from 1, the spiral arcs contract towards the origin. Figure
suggests that the impedanceZa(b) can be approximated a
the sum of two components:19

Za~b!'Za
constant1Za

spiral~b!, ~11!

where Za
constant is a frequency-independent component th

locates the center of the spiral andZa
spiral(b) traces out the

spiral by circling aboutZa
constant. The two modelsM' and

M, differ primarily in the form ofZa
constant. In modelM',

the impedanceZa
constant is negative real~a negative resis-

tance!. In modelM,, however,Za
constantis complex, imply-

ing that it affects both the resistance and the reactance o
partition. These impedance changes, and their dependen
g, are evident in the plots ofZBM(b;g) shown in Fig. 12.

The constant impedance change effected byZa
constant is

modulated with frequency byZa
spiral(b), and these modula

tions appear inZBM(b;g). For example, the real part o
ZBM(b;g) manifests a bowl-shaped minimum center
roughly one-half octave below CF~see Fig. 12!. The depth
of the bowl, but not its ‘‘axis of symmetry,’’ varies withg,
reaching its furthest negative excursion atg51 ~i.e., at low
intensities!. As discussed in Sec. III C, these variations w
intensity are similar to those seen in impedances estim
using the inverse method~de Boer and Nuttal, 2000!.

The bowl-shaped form of Re$ZBM(b;g)% evident in
both models is created by the oscillation in Re$Za

spiral(b)%,
which reaches a minimum nearb'0.74 corresponding to the
bottom of the bowl. The impedanceZa

spiral(b) also modulates
the reactance, creating frequency oscillations
Im$ZBM(b;g)% that appear roughly 90° out of phase with t
modulations in the resistance. As discussed below in S
V B, oscillations in the resistance and reactance that ap
90° out of phase with one another are expected from cau
ity, which requires that the real and imaginary parts ofZa(b)
be Hilbert transforms of one another. In both mod
Im$Za

spiral(b)% increases the effective stiffness of the partiti
342 J. Acoust. Soc. Am., Vol. 110, No. 1, July 2001
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in parts of the ‘‘tail’’ of the transfer function (b&0.74)
while decreasing the stiffness throughout most of the p
region (0.74&b&1.03).

Significantly, Im$Za
spiral(b)% passes through 0, so tha

Za
spiral(b) is nearly real, just above CF atb'1.03. In model

M', whereZa
constantis also nearly real, the zero crossing

Im$Za
spiral(b)% implies that the impedanceZa(b) leaves the

reactive component of the total partition impedance near
value ofb essentially unchanged at all intensities. Referen
to Fig. 12~a! shows that in modelM' the valueb'1.03 is
the value where the reactive component ofZp(b) vanishes.
Since Im$Zp(b)% and Im$Za(b)% both vanish at the sam
value of b, their sum, Im$ZBM(b;g)%5Im$Zp(b)%
1gIm$Za(b)%, also vanishes at this point and does so ind
pendent ofg. Note, however, that the vanishing of the rea
tance@zero crossing of Im$ZBM(b;g)%] locates the approxi-
mate natural resonant frequency of the partition@i.e., the
projection of the nearby pole of the admittanceYBM(b;g)
along the real frequency axis#.20 Our analysis of the imped
anceZa(b) has therefore brought us full circle: In mod
M' we conclude that the natural resonant frequencies of
partition must be nearly independent of intensity. In mod
M,, by contrast,Za

constant is large and complex so tha
Im$Za(b)% is always negative; in this model, therefor
Za(b) modifies the reactive component of the impedance
all frequencies and intensities@see Fig. 12~b!#. As a conse-
quence, the resonant frequencies of the partition depen
g.

Our analysis has thus identified the constraint that int
sity invariance of the resonant frequencies places on the
chanical effect of force generation by OHCs, as summari
in the impedanceZa(b): While generally affecting a sub
stantial reduction in the effective damping, the OHCs m
not significantly change the reactance of the passive parti
at frequencies in a neighborhood about its natural reson
frequency.21
Christopher A. Shera: Intensity-invariance of fine time structure
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from general physical principles~sta-
bility, local scaling, and causality!.
The argument implies thatZa(b) has
an approximately spiral form in the
complex plane. The near-invariance o
the fine time structure in the impulse
response locates this spiral near th
real ~i.e., resistive! axis.
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B. General argument for the spiral form of Za„b…

Illustrated above for two specific models~i.e., M' and
M,), the approximately spiral form of the impedanceZa(b)
can be deduced from general principles. Figure 13 sum
rizes the argument. For the cochlea to remain stable,
damping of the partition cannot everywhere be negative. S
bility requires that energy added to the traveling wave in o
region be absorbed in another; the amplifier must there
create negative damping over only a finite region of the
chlea ~e.g., just basal to the peak of the traveling wav!.
Thus, the effective damping must be modulated in spa
According to local scaling symmetry, however, modulati
in space~at fixed frequency! requires a corresponding modu
lation in frequency~at fixed position!. But in the frequency
domain, causality implies that the real and imaginary part
an impedance are not independent; rather, they are Hil
transforms of one another~e.g., Bode, 1945; Papoulis, 1977!.
Thus, frequency modulations in the damping~real part! are
necessarily accompanied by frequency modulations of s
lar amplitude in the reactance~imaginary part!.22 Since the
Hilbert transformer acts like a 90° phase shifter~e.g., the
Hilbert transform of a cosine modulation is a2sine!, the
frequency modulations~oscillations! in the damping and re
actance are roughly 90° out of phase with one another
Fig. 12~a!, for example, regions of local decrease in t
damping~e.g., nearb'0.6! correspond to local minima in
the reactance oscillation, local minima in the damping~e.g.,
the bottom of the bowl nearb'0.74! correspond to regions
of local increase in the reactance, and so on. As a co
quence of these coupled modulations in resistance and r
tance,Za(b) must have an approximately spiral form trac
out clockwise with increasingb ~cf. Fig. 11!.

This general argument yields only the approxima
shapeof the Za(b) trajectory in the complex plane; it doe
not, of course, determine the radius of the spiral, the way
radius changes withb, nor the rate at which the spiral i
traversed. Neither does the argument locate the absolute
sition of the spiral~i.e., the value ofZa

constant) in the complex
plane. As illustrated above in Sec. V A, the location of t
spiral—straddling the real-frequency axis—is set by the
quirement of near-invariance of fine time structure. If t
resonant frequencies of the partition are to remain invari
the impedanceZa(b) must leave the partition reactance u
changed at frequencies near CF.

Guided by simple models based on the inverse solu
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in the low-level linear regime~Zweig, 1991!, we have used
general principles~stability, local scaling, and causality! and
the intensity-invariance of the fine time structure of the i
pulse response to deduce the qualitative form ofZa(b) rep-
resenting the collective action of the OHCs. At frequenc
about CF, the impedanceZa(b) must~1! be roughly spiral in
form, ~2! rotate clockwise with increasing frequency abou
center with a negative real part, and~3! intersect~or at least
approach! the real~resistive! axis near the natural resona
frequency of the passive partition.

C. Implications for the origin of negative damping:
The fast-time-delayed stiffness model

Among the most biophysically plausible models so
proposed for the origin of negative damping has been
fast-time-delayed stiffness model~Neely, 1983; Zweig,
1990, 1991!. This model is based on the observation tha
negatively damped oscillator can be created from one w
positive damping by the addition of a feedback force prop
tional to the oscillator’s displacement at a previous time~i.e.,
a time-delayed stiffness!. The impedance of a time-delaye
stiffness can be written in the form

Zf5
K f

iv
e2 ivt f, ~12!

whereK f.0 is the amplitude andt f.0 the time delay of the
feedback force. Represented in vector form, a pure stiffn
~such asK f / iv) points along the negative imaginary axi
The time delay has the effect of rotating this stiffness vec
clockwise through the anglevt f . For 0,vt f,p the time
delay rotates the impedance vector into the negative real
plane, giving the impedanceZf a negative real part. In this
configuration, the feedback force can therefore reduce
damping of the system to which it is coupled.

An attractive feature of the model is that when the tim
delay is small compared to the period of the driving fr
quency, so that

0,uvt fu!1, ~13!

the resistive component ofZf is negative over a wide rang
of frequencies~specifically, for all f ,1/2t f). Thus, if the
feedback force is sufficiently strong and delayed by a n
zero time small compared to the oscillator’s period, it c
create negative damping over a broad range of character
343hristopher A. Shera: Intensity-invariance of fine time structure
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frequencies without recourse to additional tuning mec
nisms~such as having the time delay vary strongly with p
sition in the cochlea!. Transduction delays on the order of
few microseconds have been suggested~Neely, 1983; Zweig,
1990!; we therefore follow Zweig and label the impedan
Zf and its parameters with the subscript ‘‘f’’ for ‘‘fast.’
Note, however, that in addition to reducing the resistanceZf

also generally changes the reactive component of the sy
~e.g., its stiffness!. Of course, whetherZf produces a signifi-
cant change ineither the net resistance or reactance depe
on the system to which the impedance is coupled. In
paragraphs that follow we argue that in the context of
chlear mechanics~as currently understood! the fast-time-
delayed stiffness model cannot provide sufficient force
counteract the damping without also producing signific
effects on the stiffness.

Zweig ~1991! analyzed the fast-time-delayed stiffne
model in detail; we begin by recapitulating key elements
that analysis. When the time delay is sufficiently fast to s
isfy Eq. ~13!, the complex exponential in Eq.~12! can be
expanded in powers of its argument:

e2 ivt f512 ivt f2
1
2 v2t f

21 . . . . ~14!

Keeping the first three terms yields

Zf5K f / iv1Rf1 ivM f , ~15!

where

Rf[2K ft f and M f[
1
2 K ft f

2. ~16!

The impedance of the fast-acting feedback force thus
mass and stiffness terms, together with a net negative re
tance. When added to a passive harmonic oscillator~with
impedanceZp), the feedback force therefore both reduc
the effective damping and modifies the natural resonant
quency. The combined system,Zpf5Zp1Zf , has a net damp
ing ~Zweig, 1991!23

dpf'
dp2r fc f

A11r f

, ~17!

wheredp.0 is the passive damping,r f[K f /Kp is the feed-
back strength relative to the passive stiffness, andc f

[vpt f . The parametersKp andvp[2p f p are, respectively,
the stiffness and resonant angular frequency of the origi
passive oscillator. Similarly, the ratio of resonant frequenc
becomes

f pf / f p'A11r f. ~18!

Consider now the constraints imposed by the ne
invariance of the zero crossings of the impulse respon
Figure 4 suggests that consistency with the data requires
the fractional change in resonant frequency,u f pf2 f pu/ f p , due
to the feedback force be small, say no more than roug
10%. According to Eq.~18!, this requirement imposes a
upper bound on the strength of the feedback force:r f&0.2.
Now to create a net negative damping, the feedback fo
must be strong enough thatdpf,0. Analysis of the imped-
anceZBM(b) obtained using the inverse method suggests
rough estimatedpf;2dp ~Zweig, 1991!. According to Eq.
344 J. Acoust. Soc. Am., Vol. 110, No. 1, July 2001
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~17!, this requiresr fc f;2dp .24 Recent attempts to fit experi
mental data obtained from the basal turns of the cochle
passive preparations suggest thatdp*0.1 ~e.g., Mammano
and Nobili, 1993; Brass, 2000!. Combining the equations
yields the inequality

c f[vpt f;2dp /r f*2~0.1!/0.2'1, ~19!

a constraint inconsistent with Eq.~13! and the assumption
that the time delay is small compared to the oscillator peri
In other words, the fast-time-delayed stiffness model can
provide sufficient force to counteract the damping witho
shifting the resonant frequency of the system beyond
limits allowed by the data. In effect, the fast-time-delay
stiffness model therefore yields an impedance similar to
Za

constant of model M,, which fails to reproduce the near
invariance of fine time structure characteristic of the data

The argument presented here does not, of course,
out all time-delayed stiffness models, but only the simple
in which the time delay is small compared to the period
the characteristic frequency. More elaborate models
negative damping—e.g., those that invoke additional tun
mechanisms, such as having the time delay depend stro
on position in the cochlea—remain viable. For example
the time delay in Eq.~12! were to vary with position in-
versely with CF, so thatt f(x)vCF(x)'p/4, then for frequen-
cies f ' f CF the impedanceZf would contribute a nearly pure
negative-resistance component and could presumably b
ranged to produce only minor changes in the resonant
quency of the system.25

VI. SUMMARY AND DISCUSSION

Basilar-membrane and auditory-nerve responses to
pulsive acoustic stimuli—whether measured directly in
sponse to clicks or obtained indirectly using cross-
reverse-correlation and/or Fourier analysis—manifest a st
ing symmetry. A symmetry is something that stays the sa
while something else changes. In this case, the thing
changes is the intensity of the stimulus; the thing that st
the same is the phase of the oscillations in the respo
waveform ~e.g., Kianget al., 1965; Goblick and Pfeiffer,
1969; Robleset al., 1976; Carney and Yin, 1988; Rugger
et al., 1992; de Boer and Nuttall, 1997; Recioet al., 1998;
Carneyet al., 1999; Lin and Guinan, 2000; de Boer and Nu
tall, 2000; Recio and Rhode, 2000!. In this paper, we have
explored the origin and implications of this symmetry f
cochlear mechanics. Applying the EQ-NL theorem~de Boer,
1997!, we defined a family of linear cochlear models
which the strength of the active force generators is contro
by an intensity-dependent parameter,g. We conjectured that
invariance of fine time structure implies that asg is varied
the poles of the BM admittance remain within relatively na
row bands of the complex plane oriented perpendicular to
real frequency axis. Cochlear-model responses, compute
extending the model obtained by solution of the inve
problem in squirrel monkey at low sound levels~Zweig,
1991! with three different forms of the intensity dependen
of the partition admittance, support the conjecture.
Christopher A. Shera: Intensity-invariance of fine time structure
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The models we employ here, which summarize the m
chanics of the organ of Corti using equivalent point impe
ances and include only one-dimensional treatments of
full three-dimensional motion of the cochlear fluids, provi
highly simplified representations of cochlear mechanics.
simplifying, however, we hope to ‘‘eliminate the unnece
sary so that the necessary may speak.’’26 Our intention, in
other words, is not to exhibit models necessarily realistic
every detail, but rather to identify and explicate basic pr
ciples of cochlear function in the most transparent man
possible. Although obtained here using one-dimensio
point-impedance models, our conclusions nevertheless a
in more realistic geometries as well. For example, o
dimensional models appear to capture, both qualitatively
semiquantitatively, the essential physics that gives rise
traveling-wave dispersion and glides~Shera, 2001!. In addi-
tion, the impedances of the cochlear partition obtained
solutions to the inverse problem in long-wave, short-wa
and three-dimensional models are all in remarkable qua
tive agreement~e.g., Zweig, 1991; de Boer, 1995a, b; d
Boer and Nuttall, 1999!. This general agreement among s
lutions to the inverse problem supports Zweig’s~1991! con-
clusion that to reproduce the data, ‘‘it is more important,
the hierarchy of approximations, to approximate . . . the im-
pedance of the organ of Corti accurately than to work w
the correct number of spatial dimensions.’’ The success
our simple model, achieved despite Kolston’s~2000! claim
that ‘‘three-dimensional fluid behavior should be regarded
a bare minimum in any quantitative description of cochle
mechanics,’’27 corroborates Zweig’s remarks.

Physically, our conjecture implies that the local reson
frequencies of the cochlear partition are nearly independ
of intensity. We demonstrate that this intensityindependence
of resonant frequencies is consistent with the well-kno
intensitydependenceof the peak frequency of the BM trans
fer function, which shifts to lower frequencies at higher i
tensities~producing, at high intensities, the so-called ‘‘ha
octave shift’’!. We propose that, as with the glide~Shera,
2001!, the shift in best frequency arises globally, through the
intensity dependence of the dominant frequency of the d
ing pressure,rather than locally, through shifts in the loca
resonant frequencies of the partition. Our proposal thus
solves the long-standing paradox presented by measurem
of mechanical click responses, which exhibit two seemin
contradictory features: On the other hand, the respon
manifest the half-octave shift in best frequency with inte
sity; on the other, they exhibit near intensity-invariance
fine time structure.

Near-invariance of fine time structure requires that
feedback forces generated by the outer hair cells not sig
cantly affect the natural resonant frequencies of the coch
partition, which appear to vary by no more than roughly 10
over the full dynamic range of hearing. This requireme
places strong constraints on the biophysical action of
cochlear amplifier or, more generally, on the mechanism
cochlear dynamic-range compression, as characterized b
impedanceZa(b). In particular, we argue that the intensi
invariance of fine time structure—combined with gene
principles, such as stability, local scaling, and causality
J. Acoust. Soc. Am., Vol. 110, No. 1, July 2001 C
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requires that in the region near CF the impedanceZa(b)
must~1! be roughly spiral in form,~2! rotate clockwise with
increasing frequency about a center with a negative real p
and ~3! closely approach the real axis near the natural re
nant frequency of the passive partition. This requirement
pears inconsistent with models in which the OHCs mod
the tonic stiffness of the cochlear partition, thereby effect
substantial changes in its resonant frequency~Allen, 1990,
1997!. The requirement also suggests that tonic change
OHC stiffness, whether mediated by somatic motor prote
~He and Dallos, 1999, 2000! or via the ciliary bundle~e.g.,
Howard and Hudspeth, 1988!, have a relatively small effec
on the total stiffness of the partition, at least for near-be
frequency stimuli in the basal turns of the cochlea. In t
respect, our conclusions are consistent with current meas
ments, which suggest that the axial stiffness and the OH
considerably smaller than the stiffness of the basilar me
brane~Russell and Schauz, 1995; He and Dallos, 1999!.

Our conclusions thus contradict many, if not most, c
chlear models. Although most cochlear models are not m
festly nonlinear, they usually specify the equivalents of wh
we call ZBM(b) and Zp(b) ~i.e., the impedances with an
without contributions from force generation by OHCs!.
Since intensity variations appear to interpolate smoothly
tween these two extremes~de Boer and Nuttall, 2000!, the
qualitative behavior of a model’s implicit intensity depe
dence can often be inferred from the relation between th
two impedances. Our results indicate that to reproduce
invariance of the fine time structure of the impulse respon
the resonant frequencies ofZBM(b) and Zp(b) need to be
nearly identical~i.e., within roughly 10% of one another!.
However, plots of the effect of the cochlear amplifier on t
BM admittance~Hubbard and Mountain, 1996! indicate that
many cochlear models~e.g., Mountainet al., 1983; Kolston
et al., 1990; Geisler, 1991; Hubbard, 1993! fail to satisfy this
constraint, indicating that such models cannot reproduce
approximate invariance of response timing, as assessed e
by varying intensity or by disabling the active mechanism
Furthermore, our results rule out what is perhaps the m
biophysically plausible mechanism so far proposed for
origin of negative damping, namely the fast-time-delay
stiffness model~Neely, 1983; Zweig, 1990!. Although cur-
rent cochlear models reproduce, to varying degrees, the f
of empirical transfer functions measured in sensitive pre
rations near threshold, the problem they evidently leave
solved is understanding the biophysical basis of an ac
feedback force that is strong enough to reverse the sig
the partition damping while leaving its resonant frequenc
nearly unchanged.
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1Intensity-invariance of fine time structure, an excellent approximation
low and moderate sound-pressure levels~SPLs!, breaks down in auditory-
nerve responses at the highest sound levels. The data of Lin and G
~2000!, for example, show clear evidence for phase reversals and o
‘‘anomalies’’ at click levels of 90 dB pSPL~peak-equivalent SPL! and
above. Although species and methodological issues complicate the
parison, click responses measured on the basilar membrane show little
dence of comparable features, maintaining near-invariance of their
crossings even at levels exceeding 115 pSPL~e.g., Recio and Rhode
2000!.

2In this paper, the term ‘‘best frequency’’~BF! is used to locate the maxi
mum of the BM frequency response, which may vary with intensity. T
‘‘characteristic frequency’’~CF! is defined as the best frequency measu
in the low-level linear limit. By definition, the CF is therefore independe
of intensity.

3For an example illustrating the calculation ofg(I /I 0) for a particular form
of the transduction nonlinearity, see Appendix B of de Boer and Nut
~2000!.

4Given the normalized pole locationz3[b31 ia3 , one can find the cor-
responding undamped resonant frequency and damping constant of th
cillator from the relationsf p5 f CFuz3u anddp52a3 /uz3u. Note that fixing
the natural resonant frequency of the oscillator by moving its poles a
lines of constantb3 requires changing bothdp and f p . Fractional changes
in f p , however, are generally small.

5Movement of the admittance poles along lines perpendicular to the
frequency axis yields exact invariance of fine time structure for the
placement response of the oscillator. For the velocity response, how
the invariance is only approximate. To see this, note that the velocity
sponse of the oscillator has the formv(t)}cos(2pb3t1f)e22pa3t,
where sin(f)5r /A11r 2 with r[a3 /b3 . The phase shiftf—and thus
the fine time structure of the waveform~e.g., the position of its zero
crossings!—therefore depends ona3 . Note, however, that this dependenc
on a3 is weak ~i.e., f!2p for the valuesr !1 characteristic of tuned
oscillators!.

6In this paper the scaling variableb is defined as the model-independe
ratio f / f CF(x), wheref CF(x) is the characteristic frequency defined by t
peak of the transfer function~see Note 2!. Note, however, that in the mode
of cochlear mechanics defined by Eq.~9! ~Zweig 1991!, b refers to the ratio
f / f r(x), where f r(x) is the undamped resonant frequency of the oscilla
~i.e., the resonant frequency in the limit when the damping,d, and stabiliz-
ing feedback force,r, are both negligible!. The parameter values given i
Note 8 imply that f CF(x) and f r(x) are everywhere proportional, with
f r / f CF'1.03. We have maintained the distinction between these two
quencies in all model calculations, but, for clarity of exposition, have
nored this small difference in the main text.

7Note that each of the infinite number of poles has a positive imaginary p
Despite creating a region of negative damping, the model is therefore s
at all frequencies~energy created at one location is absorbed at anoth!.
Equation~145! of Zweig ~1991! gives an explicit expression forYBM in
terms of its poles and their residues.

8This note describes the procedure used to determine the parameter val
the model admittance given in Eq.~9!. The admittanceYBM(b) is first
obtained as a function ofz ~or complexb! by analytic continuation into the
complex frequency plane.@Recall from Note 6 that in this context th
normalized frequencyb is defined as the ratiof / f r(x).] Three constraining
equations are then used to determine the three model parameters$d,r,m%.
We specify~1! the imaginary part of one of the two closely spaced poles
YBM(z) and then require that~2! the real and~3! the imaginary parts of the
second pole coincide with those of the first. More precisely, givena*
[Im$z* %.0, wherez* denotes the double pole ofYBM(z), one deter-
mines the three parameters$d,r,m%; the real part of the double pole,b*
[Re$z* %; and the auxiliary variablea by solving the system of five simul-
taneous equations

a*5d/21a;

2pam51;

a/b*5tan@2p~n/21
3
4!2b* /a#;

b
*
2 512~d/2!22a2;

and
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r52a@12~d/2!2#1/2e2a
*

/a.

The solution for the auxiliary variablea is

a5~a*1Aa
*
2 1c~12a

*
2 !!/c,

wherec521x22 andx is the solution to the equation

x211tan21~x!52p~n/21
3
4!,

obtained numerically. The values of$d,r,m% can then be obtained by direc
substitution. Evaluating the equations using the valuea* 5Im$z* %50.04

adopted in the text~and taking n52 for m'1
3
4) yields $d,r,m%

5$20.1024,0.1175,1.7450%. Finally, the proportionality constant in Eq
~9! for YBM(b) was set equal to 1.

9The model parameterN, which determines the approximate number
wavelengths of the traveling wave on the basilar membrane in respon
sinusoidal stimulation~Zweig et al., 1976; Zweig, 1991!, was given the
valueN52.5.

10The passive admittance thus has the form~6!, with a proportionality con-
stant of 1. In modelM', the damping constantdp was given the value
dp50.32; in modelM,, introduced in Sec. III C 1, a slightly highe
damping (dp50.42) was needed to maintain model stability.

11Although we write ‘‘modelM'’ ’ using the singular,M' actually de-
notes an entirefamily of models, one for each value ofg.

12Recall that scaling relates properties of the mechanical transfer functio
those of the traveling wave. In particular, mechanical transfer functi
T@ f / f CF(x)# measured as a function off at fixedx also describe the trav-
eling displacement wave as a function ofx at fixed f. At fixed position,T
is the transfer function; at fixed frequency, the traveling wave.

13Although qualitative agreement with the findings of de Boer and Nut
~2000! remains strong, note that in the one-dimensional model used
the imaginary part of the partition impedance goes through zero at a v
of b ~'1.03! closer to the location of the transfer-function peak th
indicated by solutions to the inverse method obtained using two-
three-dimensional models~de Boer and Nuttall, 2000!.

14Several of these poles located ‘‘above CF’’ are illustrated in Fig. 3
Chap. VIII of Shera~1992! and in Fig. 5 of Zweig and Shera~1995!.

15The admittanceyBM(t;g) represents the velocity response to a press
impulse applied locally; it therefore jumps discontinuously to a nonz
value att50 ~see, e.g., Note 16 of Shera, 2001!.

16To see that the principal poles of the model-M5 admittance are arrayed
along a curve nearly perpendicular to the real-frequency axis, note tha
equations in Note 8 yieldb

*
2 512a

*
2 1d/2pm, wherez* [b* 1 ia* de-

notes the location of the double pole ofYBM(z) in the complexb plane.

Sincem'1
3
4, the quantityudu/2pm is typically much less than 1. Thus

b* '1 for valuesa* !1. In other words, fora* !1 the double pole lies
approximately along the vertical lineb* 51 at a distancea* from the real
axis. The small but systematic deviations from the vertical predicted
this analysis are evident in the trajectory shown in Fig. 5~c!. @Recall that
the line b* 51, for b5 f / f r , corresponds to the lineb* 51.03, for b
5 f / f CF ~see Note 6!.#

17This explanation for the half-octave shift has been proposed independ
by Carney~1999!, who noted that intensity-dependent shifts in the temp
ral envelope of BM and auditory-nerve click responses, when combi
with the intensity-independent frequency glide, can produce changes in
best frequency of the response.

18Although it characterizes the mechanical effects of local force genera
by OHCs, the impedanceZa should not be regarded as characterizing t
‘‘cochlear amplifier.’’ Cochlear amplification of traveling waves depen
on both the active and passive mechanics and their interaction with
surrounding fluids over a fairly broad region of the cochlea.

19The suggestion thatZa(b) be represented as the sum of two compone
with this same qualitative form has been made earlier by Zweig~1990,
1991!. In an effort to provide a biophysical basis for negative dampin
Zweig suggested thatZa(b) be written as the sum of a fast- and a slow
acting time-delayed stiffness. In that model, the fast-time-delayed stiffn
~delay much smaller than a period! provides negative damping and th
slow-time-delayed stiffness~delay approximately 1

3
4 periods! provides the

necessary frequency modulation by stabilizing the resulting oscillator.
discuss the fast-time-delayed stiffness model, and show that it yield
impedanceZa

constantsimilar to that of modelM,, in Sec. III C.
20For a passive oscillator of the form~7!, the zero crossing of the reactanc
Christopher A. Shera: Intensity-invariance of fine time structure
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(Im$Zp(b0)%50) occurs at the valueb05uz3u, corresponding to the un
damped resonant frequency of the oscillator (f p).

21Reactance changes due to OHCs at other frequencies are not prec
Indeed, as shown in Sec. III B, they are required by stability, local scal
and causality.

22Note that the constraints of causality apply even though the real part o
impedanceZa(b) is negative.

23In deriving Eqs.~17! and ~18! we have used the inequalityc f5vpt f!1,
an approximation equivalent to neglecting the mass term in Eq.~15!.

24We have used the inequalityr f&0.2 to approximateA11r f as unity.
25This model for the origin of negative damping might be called the ‘‘tune

time-delayed stiffness model.’’
26The quotation is from Hans Hoffmann~quoted in Efron and Tibshirani

1993!.
27Kolston may be referring here to recent suggestions from M theory tha

universe we inhabit actually comprises ten spatial dimensions~see, e.g.,
Greene, 1999!.

Allen, J. B. ~1990!. ‘‘Modeling the noise damaged cochlea,’’ inMechanics
and Biophysics of Hearing, edited by P. Dallos, C. D. Geisler, J. W
Matthews, M. A. Ruggero, and C. R. Steele~Springer, Berlin!, pp. 324–
331.

Allen, J. B. ~1997!. ‘‘OHCs shift the excitation pattern via BM tension,’’ in
Diversity in Auditory Mechanics, edited by E. R. Lewis, G. R. Long, R. F
Lyon, P. M. Narins, C. R. Steele, and E. L. Hecht-Poinar~World Scien-
tific, Singapore!, pp. 167–175.

Bode, H. ~1945!. Network Analysis and Feedback Amplifier Design~Van
Nostrand Reinhold, Princeton!.

Brass, D.~2000!. ‘‘A macromechanical model of the guinea pig cochle
with realistic parameters,’’ J. Acoust. Soc. Am.107, 894–907.

Carney, L. H. ~1999!. ‘‘Temporal response properties of neurons in t
auditory pathway,’’ Curr. Opin. Neurobiol.9, 442–446.

Carney, L. H., McDuffy, M. J., and Shekhter, I.~1999!. ‘‘Frequency glides
in the impulse responses of auditory-nerve fibers,’’ J. Acoust. Soc. A
105, 2384–2391.

Carney, L. H., and Yin, T. C. T.~1988!. ‘‘Temporal coding of resonances b
low-frequency auditory nerve fibers: Single fiber responses and a pop
tion model,’’ J. Neurophysiol.60, 1653–1677.

de Boer, E.~1995a!. ‘‘The inverse problem solved for a three-dimension
model of the cochlea. I. Analysis,’’ J. Acoust. Soc. Am.98, 896–903.

de Boer, E.~1995b!. ‘‘The inverse problem solved for a three-dimension
model of the cochlea. II. Application to experimental data sets,’’
Acoust. Soc. Am.98, 904–910.

de Boer, E.~1997!. ‘‘Connecting frequency selectivity and nonlinearly fo
models of the cochlea,’’ Aud. Neurosci.3, 377–388.

de Boer, E., and Nuttall, A. L.~1997!. ‘‘The mechanical waveform of the
basilar membrane. I. Frequency modulations~‘glides’! in impulse re-
sponses and cross-correlation functions,’’ J. Acoust. Soc. Am.101, 3583–
3592.

de Boer, E., and Nuttall, A. L.~1999!. ‘‘The inverse problem solved for a
three-dimensional model of the cochlea. III. Brushing up the solut
method,’’ J. Acoust. Soc. Am.105, 3410–3420.

de Boer, E., and Nuttall, A. L.~2000!. ‘‘The mechanical waveform of the
basilar membrane. III. Intensity effects,’’ J. Acoust. Soc. Am.107, 1497–
1507.

Efron, B., and Tibshirani, R. J.~1993!. An Introduction to the Bootstrap
~Chapman and Hall, New York!.

Geisler, C. D.~1991!. ‘‘A cochlear model using feedback from motile oute
hair cells,’’ Hear. Res.54, 105–117.

Goblick, T. J., and Pfeiffer, R. R.~1969!. ‘‘Time-domain measurements o
cochlear nonlinearities using combination click stimuli,’’ J. Acoust. S
Am. 46, 924–938.

Greene, B.~1999!. The Elegant Universe—Superstrings, Hidden Dime
sions, and the Quest for the Ultimate Theory~Norton, New York!.

Gummer, A. W., Smolders, J. W. T., and Klinke, R.~1987!. ‘‘Basilar mem-
brane motion in the pigeon measured with the Mo¨ssbauer technique,’’
Hear. Res.29, 63–92.

He, D. Z. Z., and Dallos, P.~1999!. ‘‘Somatic stiffness of cochlear outer ha
cells is voltage dependent,’’ Proc. Natl. Acad. Sci. U.S.A.96, 8223–8228.
J. Acoust. Soc. Am., Vol. 110, No. 1, July 2001 C
ed:
,

he

-

e

.

la-

.

n

.

-

He, D. Z. Z., and Dallos, P.~2000!. ‘‘Properties of voltage-dependent so
matic stiffness of cochlear outer hair cells,’’ J. Assoc. Res. Otolaryngo1,
46–813.

Howard, J., and Hudspeth, A. J.~1988!. ‘‘Compliance of the hair bundle
associated with gating of mechanoelectrical transduction channels in
bullfrog’s saccular hair cell,’’ Neuron1, 189–199.

Hubbard, A. E.~1993!. ‘‘A traveling-wave amplifier model of the cochlea,’
Science259, 68–71.

Hubbard, A. E., and Mountain, D. C.~1996!. ‘‘Models of the cochlea,’’ in
Auditory Computation, edited by H. L. Hawkins, T. A. McMullen, A. N.
Popper, and R. R. Fay~Springer, New York!, pp. 62–120.

Kiang, N. Y. S., and Moxon, E. C.~1974!. ‘‘Tails of tuning curves of
auditory-nerve fibers,’’ J. Acoust. Soc. Am.55, 620–630.

Kiang, N. Y. S., Watanabe, T., Thomas, E. C., and Clark, L. F.~1965!.
Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve~MIT,
Cambridge, MA!.

Kolston, P. J.~2000!. ‘‘The importance of phase data and model dimensio
ality to cochlear mechanics,’’ Hear. Res.145, 25–36.

Kolston, P. J., Viergever, M. A., de Boer, E., and Smoorenburg, G.
~1990!. ‘‘What type of force does the cochlear amplifier produce?’’
Acoust. Soc. Am.88, 1794–1801.

Liberman, M. C.~1978!. ‘‘Auditory-nerve response from cats raised in
low-noise chamber,’’ J. Acoust. Soc. Am.63, 442–455.

Lin, T., and Guinan, J. J.~2000!. ‘‘Auditory-nerve-fiber responses to
high-level clicks: Interference patterns indicate that excitation is due
the combination of multiple devices,’’ J. Acoust. Soc. Am.107, 2615–
2630.

Mammano, F., and Nobili, R.~1993!. ‘‘Biophysics of the cochlea: Linear
approximation,’’ J. Acoust. Soc. Am.93, 3320–3332.

Moller, A. R. ~1977!. ‘‘Frequency selectivity of single auditory-nerve fiber
in response to broadband noise stimuli,’’ J. Acoust. Soc. Am.62, 135–
142.

Mountain, D. C., Hubbard, A. E., and McMullen, T. A.~1983!. ‘‘Electro-
mechanical processes in the cochlea,’’ inMechanics of Hearing, edited by
E. de Boer and M. A. Viergever~Martinus Nijhoff, The Hague!, pp. 119–
126.

Neely, S. T.~1983!. ‘‘The cochlear amplifier,’’ inMechanics of Hearing,
edited by E. Boer and M. A. Viergever~Martinus Nijhoff, The Hague!, pp.
111–118.

Papoulis, A.~1977!. Signal Analysis~McGraw-Hill, New York!.
Recio, A., and Rhode, W. S.~2000!. ‘‘Basilar membrane responses t

broadband stimuli,’’ J. Acoust. Soc. Am.108, 2281–2298.
Recio, A., Rich, N. C., Narayan, S. S., and Ruggero, M. A.~1998!.

‘‘Basilar-membrane responses to clicks at the base of the chinchilla
chlea,’’ J. Acoust. Soc. Am.103, 1972–1989.

Rhode, W. S.~1971!. ‘‘Observations of the vibration of the basilar mem
brane in squirrel monkeys using the Mo¨ssbauer technique,’’ J. Acoust
Soc. Am.49, 1218–1231.

Rhode, W. S., and Recio, A.~2000!. ‘‘Study of mechanical motions in the
basal region of the chinchilla cochlea,’’ J. Acoust. Soc. Am.107, 3317–
3332.

Robles, L., Rhode, W. S., and Geisler, C. D.~1976!. ‘‘Transient response of
the basilar membrane measured in squirrel monkeys using the Mo¨ssbauer
effect,’’ J. Acoust. Soc. Am.59, 926–939.

Ruggero, M. A., Rich, N. C., and Recio, A.~1992!. ‘‘Basilar membrane
responses to clicks,’’ inAuditory Physiology and Perception, edited by Y.
Cazals, K. Horner, and L. Demany~Pergamon, Oxford!, pp. 85–91.

Russell, I., and Schauz, C.~1995!. ‘‘Salicylate ototoxicity: Effects on the
stiffness and electromotility of outer hair cells isolated from the guinea
cochlea,’’ Aud. Neurosci.1, 309–319.

Shera, C. A.~1992!. ‘‘Listening to the Ear,’’ Ph.D. thesis, California Insti
tute of Technology.

Shera, C. A.~2001!. ‘‘Frequency glides in click responses of the basil
membrane and auditory nerve: Their scaling behavior and origin
traveling-wave dispersion,’’ J. Acoust. Soc. Am.109, 2023–2034.

Siebert, W. M.~1968!. ‘‘Stimulus transformations in the peripheral auditor
system,’’ in Recognizing Patterns, edited by P. A. Kolers and M. Eden
~MIT, Cambridge!, pp. 104–133.

Sondhi, M. M. ~1978!. ‘‘Method for computing motion in a two-
dimensional cochlear model,’’ J. Acoust. Soc. Am.63, 1468–1477.

Zweig, G. ~1976!. ‘‘Basilar membrane motion,’’ inCold Spring Harbor
Symposia on Quantitative Biology, Volume XL, 1975~Cold Spring Harbor
Laboratory, Cold Spring Harbor, NY!, pp. 619–633.

Zweig, G. ~1990!. ‘‘The impedance of the organ of Corti,’’ inMechanics
347hristopher A. Shera: Intensity-invariance of fine time structure



.

.

and Biophysics of Hearing, edited by P. Dallos, C. D. Geisler, J. W
Matthews, M. A. Ruggero, and C. R. Steele~Springer, Berlin!, pp. 362–
369.

Zweig, G. ~1991!. ‘‘Finding the impedance of the organ of Corti,’’ J
Acoust. Soc. Am.89, 1229–1254.
348 J. Acoust. Soc. Am., Vol. 110, No. 1, July 2001
Zweig, G., Lipes, R., and Pierce, J. R.~1976!. ‘‘The cochlear compromise,’’
J. Acoust. Soc. Am.59, 975–982.

Zweig, G., and Shera, C. A.~1995!. ‘‘The origin of periodicity in the spec-
trum of evoked otoacoustic emissions,’’ J. Acoust. Soc. Am.98, 2018–
2047.
Christopher A. Shera: Intensity-invariance of fine time structure


